화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.3, 249-258, June, 2008
양극산화 기술을 이용한 금속산화물 나노구조 제조 및 응용 동향
Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications
E-mail:
초록
규칙적으로 배열되어 있는 나노크기의 기공을 가지고 있는 다공성 알루미나는 최근 응용범위의 확대 때문에 많은 관심을 끌고 있다. 이러한 다공성 알루미나를 제조하는 기본 원리는 제한된 조건하에서 금속을 양극산화 시키는 것이다. 전기화학적 양극산화에 의한 다공성 구조 제어 및 성장 메커니즘에 대한 연구는 최근 알루미늄에서부터 다른 부동태금속으로 확대 되었으며 특히 최근에는 타이타늄 산화물 나노구조 제어에 성공적으로 적용되었다. 본 총설에서는 알루미늄의 양극산화 원리를 기술하고 최근 연구되어 있는 타이타늄 및 다른 부동태 금속에 적용되는 양극산화 기술의 흐름을 다룬다.
Nanoporous alumina with highly ordered pore arrays, which is prepared based on electrochemical anodization under the controlled conditions, has attracted great attention due to the variety of its applications. In case of porous alumina, the manipulation of nanoporous structures under different electrochemical conditions and their formation mechanisms have been studied for a long time. Recently, its principles have been applied to other valve metals. Especially, there have been a big success in the preparation of titania nanotubes via the anodization of titanium. In this paper, we review the anodization of aluminum and recent trends in anodization of Ti and other valve metals based on the principles of aluminum anodization.
  1. 원국광, 최태규, 양극산화 기술, 신광문화사 (2003)
  2. Choi J, Ph.D dissertation, Martin-Luther-Universitat, Halle-Wittenberg, Germany (2004)
  3. 이익모, 진인주, 나노소재, 대영사, 263 (2005)
  4. Masuda H, Fukuda K, Science, 268(5216), 1466 (1995)
  5. Nielsch K, Choi J, Schwirn K, Wehrspohn RB, Gosele U, Nano Lett., 2, 677 (2002)
  6. Choi J, Luo Y, Wehrspohn RB, Hillebrand R, Schilling J, Gosele U, J. Appl. Phys., 94, 4757 (2003)
  7. Miikkulainen V, Rasilainen T, Puukilainen E, Suvanto M, Pakkanen TA, Langmuir, 24, 4473 (2008)
  8. Kashi MA, Ramazani A, Rahmandoust M, Noormohammadi M, J. Phys. D-Appl. Phys., 40, 4625 (2007)
  9. Jessensky O, Muller F, Gosele U, Appl. Phys. Lett., 72, 1173 (1998)
  10. Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T, Appl. Phys. Lett., 71, 2770 (1997)
  11. Li AP, Muller F, Gosele U, Electrochem. Solid State Lett., 3(3), 131 (2000)
  12. Choi J, Nielsch K, Reiche M, Wehrspohn RB, Gosele U, J. Vac. Sci. Technol. B, 21(2), 763 (2003)
  13. Lee W, Ji R, Ross CA, Gosele U, Nielsch K, Small, 2, 978 (2006)
  14. Kim SJ, Lim JH, Choi J, Polym. Sci. Technol., 17, 742 (2006)
  15. Masuda H, Asoh H, Watanabe M, Nishio K, Nakao M, Tamamura T, Adv. Mater., 13(3), 189 (2001)
  16. Choi JS, Wehrspohn RB, Gosele U, Adv. Mater., 15(18), 1531 (2003)
  17. Zhao SY, Chan K, Yelon A, Veres T, Adv. Mater., 19(19), 3004 (2007)
  18. Lee W, Ji R, Gosele U, Nielsch K, Nat. Mater., 5, 741 (2006)
  19. Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gosele U, Nat. Nanotechnol., 3, 234 (2008)
  20. Kashi MA, Ramazani A, Noormohammadi M, Zarei M, Marachi P, J. Phys. D-Appl. Phys., 40, 7032 (2007)
  21. Choi JS, Wehrspohn RB, Lee J, Gosele U, Electrochim. Acta, 49(16), 2645 (2004)
  22. Gopal K, OommanK, Varghese, Paulose M, Shankar K, Grimes CA, Sol. Energy Mater. Sol. Cells, 90, 2011 (2006)
  23. Kim SJ, Choi J, Ceramist, 10, 2 (2007)
  24. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC, J. Mater. Res., 40, 3331 (2001)
  25. Cai Q, Paulose M, Varghese OK, Grimes CA, J. Mater. Res., 20, 230 (2005)
  26. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 5, 191 (2005)
  27. Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA, J. Mater. Res., 19, 628 (2004)
  28. Mor GK, Varghese OK, Paulose M, Grimes CA, Sensor Lett, 1, 42 (2003)
  29. Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA, J. Mater. Res., 18, 2588 (2003)
  30. Parkhutik VP, Shershulsky VI, J. Phys. D-Appl. Phys., 25, 1258 (1992)
  31. Macdonald DD, J. Electrochem. Soc., 140, L27 (1993)
  32. Thompson GE, Thin Solid Films, 297(1-2), 192 (1997)
  33. Pakes A, Thompson GE, Skeldon P, Morgan PC, Corrosion Sci., 45, 1275 (2003)
  34. Siejka J, Ortega C, J. Electrochem. Soc.: Solid State Sci. Technol., 124, 883 (1977)
  35. Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA, J. Phys. Chem. C, 111, 14992 (2007)
  36. Lim JH, Choi J, Small, 3, 1504 (2007)
  37. Fairbrother F, The Chemistry of Niobium and Tantalum, Elsevier, Amsterdam, 20 (1967)
  38. Sieber I, Hildebrand H, Friedrich A, Schmuki P, Electrochem. Commun., 7, 97 (2005)
  39. Karlinsey LR, Electrochem. Commun., 7, 1190 (2005)
  40. Choi JS, Lim JH, Lee SC, Chang JH, Kim KJ, Cho MA, Electrochim. Acta, 51(25), 5502 (2006)
  41. Choi J, Lim JH, Lee J, Kim KJ, Nanotechnology, 18, 055603 (2007)
  42. Park WI, Yi GC, Kim MY, Pennycook SJ, Adv. Mater., 14(24), 1841 (2002)
  43. Kong Y, Yu D, Zhang B, Fang W, Feng S, Appl. Phys. Lett., 78, 407 (2001)
  44. Zhang HZ, Sun XC, Wang RM, Yu DP, J. Cryst. Growth, 269(2-4), 464 (2004)
  45. Wu JJ, Liu SC, Adv. Mater., 14(3), 215 (2002)
  46. Peterson RB, Fields CL, Gregg BA, Langmuir, 20(12), 5114 (2004)
  47. Tian Z, Voigt J, Liu J, Mckenzie B, Mcdermott M, Rodriguez M, Konishi H, Xu H, Nat. Mater., 2, 821 (2003)
  48. Chang SS, Yoon SO, Park HJ, Sakai A, Mater. Lett., 53, 432 (2002)
  49. Wu X, Lu G, Li C, Shi G, Nanotechnology, 17, 4936 (2006)
  50. Kuan CY, Chou JM, Leu IC, Hon MH, Electrochem. Commun., 9, 2093 (2007)
  51. Kim SJ, Lee J, Choi J, Electrochim. Acta, Electroch (2008)
  52. Kim SJ, Choi J, Electrochem. Commun., 10, 175 (2008)