화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.3, 351-356, June, 2008
마이크로에멀젼법에 의한 이산화티탄의 합성 및 p-Nitrophenol의 광촉매 분해반응
Synthesis of Titanium Dioxides by Microemulsion Method and Their Photocatalytic Degradation of p-Nitrophenol
E-mail:
초록
비이온성의 N.P-10 (Polyoxyethylene Nonylphenol Ether: C9H19C6H4(OCH2CH2)10OH) 계면활성제를 사용하여 나노크기의 TiO2를 제조하였으며, TGA-DTA TEM, XRD, FT-IR 등을 사용하여 마이크로에멀젼을 이용한 나노입자 제조시 Wo(H2O/AOT)비에 따른 입자의 크기 및 결정성 등 물리적 성질을 조사하였다. 또한 제조된 TiO2 나노입자의 광촉매적 특성을 알아보기 위해 회분식 반응장치를 이용하여 p-nitrophenol의 광분해반응의 활성을 조사하였다. 제조된 TiO2 나노입자는 300∼600 ℃의 소성온도 범위에서 anatase 구조가 형성되었으며, 소성온도 700 ℃에서 anatase 구조에서 rutile 구조로 전이되기 시작하였다. 입자크기는 Wo 비가 증가함에 따라 증가하였고, 반면에 p-nitrophenol의 광분해반응에서 반응성은 감소하였다. 또한 400∼500 ℃에서 소성된 TiO2 촉매가 순수한 anatase 구조를 가지며 가장 높은 p-nitrophenol 분해활성을 보여주었다.
Titania nanoparticles were prepared by controlled hydrolysis of titanium tetraisopropoxide (TTIP) in water-in-oil (W/O) and microemulsion stabilized with a nonionic surfactant, N.P-10 (Polyoxyethylene Nonylphenol Ether: C9H19C6H4 (OCH2CH2)10OH)). The nanosized particles prepared in W/O microemulsion were characterized by FT-IR, TEM, XRD, TGA, and DTA. In addition, the photocatalytic degradation of p-nitrophenol has been studied by using a batch reactor in the presence of UV light in order to compare the photocatalytic activity of prepared nanosized titania. The nanaosized titania particles calcined at 300∼600 ℃ showed an anatase structure, but it transformed to a rutile phase above 700 ℃ of calacination temperature. With an increase of Wo ratio, the crystallite size increased but photocalytic activity decreased. The titania synthesized at Wo= 5, R = 2, and calcined at 400∼500 ℃ showed the highest activity on the photocatalytic degradation of p-nitrophenol.
  1. Suryanyana C, Froes FH, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 23A, 1071 (1992)
  2. Alivisatos AP, MRS Bull., Aug., 23 (1995)
  3. Chang WI, Kang SW, Lee KR, J. Korean Ceram. Soc., 35, 594 (1998)
  4. Herrig H, Hempelmann R, Mater. Lett., 27, 287 (1996)
  5. Palmisano L, Augugliaro V, Schiavello M, Sclafani A, J. Mol. Catal., 56, 284 (1989)
  6. Sclafani A, Palmisano L, Schiavello M, J. Phys. Chem., 94, 829 (1990)
  7. Cullity BD, Elements of X-Ray Diffraction. Adison-Wesley, Reading, MA (1978)
  8. Lee MS, Lee GD, Ju CS, Lim KT, Hong SS, J. Korean Ind. Eng. Chem., 13(3), 216 (2002)
  9. Palmisano L, Augugliaro V, Schiavello M, Sclafani A, J. Mol. Catal., 56, 284 (1989)
  10. Sclafani A, Palmisano L, Schiavello M, J. Phys. Chem., 94, 829 (1990)
  11. Kumar PNK, Ph. D. Thesis, University of Twente, 7500 AE Enschede, The Netherlands (1993)
  12. Chhabra V, Pillai V, Mishra BK, Morrone A, Shah DO, Langmuir, 11, 33 (1995)
  13. Larbot A, Alary JA, Fabre JP, Guizard C, Cot L, Better Ceramics Through Chemistry Ⅱ, 659 (1986)
  14. Primet M, Pichat P, Mathieu MV, J. Phys. Chem., 75, 1221 (1971)
  15. Loepz T, Gomez R, Sanchez E, Tzompantzi F, Vera L, J. Sol-Gel Sci. Technol., 22, 99 (2001)
  16. Osseo-Asare K, Arriagada FJ, in Better Ceramics Through Chemistry Ⅲ, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Materials Research Society) (1988)
  17. Fletcher PDI, Howe AM, Robinson BH, J. Chem. Soc.-Faraday Trans., 183, 985 (1987)
  18. Fendler JH, Chem. Rev., 87, 887 (1987)
  19. Barnickel P, Wokaun A, Sayer W, Eicke HF, J. Colloid Interface Sci., 148, 80 (1991)
  20. Wolf K, Yazdani A, Yates P, J. Air Waste Manage. Assoc., 41, 1055 (1991)
  21. Turchi CS, Ollis DF, J. Catal., 122, 178 (1990)