- Previous Article
- Next Article
- Table of Contents
Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.3, 351-356, June, 2008
마이크로에멀젼법에 의한 이산화티탄의 합성 및 p-Nitrophenol의 광촉매 분해반응
Synthesis of Titanium Dioxides by Microemulsion Method and Their Photocatalytic Degradation of p-Nitrophenol
E-mail:
초록
비이온성의 N.P-10 (Polyoxyethylene Nonylphenol Ether: C9H19C6H4(OCH2CH2)10OH) 계면활성제를 사용하여 나노크기의 TiO2를 제조하였으며, TGA-DTA TEM, XRD, FT-IR 등을 사용하여 마이크로에멀젼을 이용한 나노입자 제조시 Wo(H2O/AOT)비에 따른 입자의 크기 및 결정성 등 물리적 성질을 조사하였다. 또한 제조된 TiO2 나노입자의 광촉매적 특성을 알아보기 위해 회분식 반응장치를 이용하여 p-nitrophenol의 광분해반응의 활성을 조사하였다. 제조된 TiO2 나노입자는 300∼600 ℃의 소성온도 범위에서 anatase 구조가 형성되었으며, 소성온도 700 ℃에서 anatase 구조에서 rutile 구조로 전이되기 시작하였다. 입자크기는 Wo 비가 증가함에 따라 증가하였고, 반면에 p-nitrophenol의 광분해반응에서 반응성은 감소하였다. 또한 400∼500 ℃에서 소성된 TiO2 촉매가 순수한 anatase 구조를 가지며 가장 높은 p-nitrophenol 분해활성을 보여주었다.
Titania nanoparticles were prepared by controlled hydrolysis of titanium tetraisopropoxide (TTIP) in water-in-oil (W/O) and microemulsion stabilized with a nonionic surfactant, N.P-10 (Polyoxyethylene Nonylphenol Ether: C9H19C6H4 (OCH2CH2)10OH)). The nanosized particles prepared in W/O microemulsion were characterized by FT-IR, TEM, XRD, TGA, and DTA. In addition, the photocatalytic degradation of p-nitrophenol has been studied by using a batch reactor in the presence of UV light in order to compare the photocatalytic activity of prepared nanosized titania. The nanaosized titania particles calcined at 300∼600 ℃ showed an anatase structure, but it transformed to a rutile phase above 700 ℃ of calacination temperature. With an increase of Wo ratio, the crystallite size increased but photocalytic activity decreased. The titania synthesized at Wo= 5, R = 2, and calcined at 400∼500 ℃ showed the highest activity on the photocatalytic degradation of p-nitrophenol.
- Suryanyana C, Froes FH, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 23A, 1071 (1992)
- Alivisatos AP, MRS Bull., Aug., 23 (1995)
- Chang WI, Kang SW, Lee KR, J. Korean Ceram. Soc., 35, 594 (1998)
- Herrig H, Hempelmann R, Mater. Lett., 27, 287 (1996)
- Palmisano L, Augugliaro V, Schiavello M, Sclafani A, J. Mol. Catal., 56, 284 (1989)
- Sclafani A, Palmisano L, Schiavello M, J. Phys. Chem., 94, 829 (1990)
- Cullity BD, Elements of X-Ray Diffraction. Adison-Wesley, Reading, MA (1978)
- Lee MS, Lee GD, Ju CS, Lim KT, Hong SS, J. Korean Ind. Eng. Chem., 13(3), 216 (2002)
- Palmisano L, Augugliaro V, Schiavello M, Sclafani A, J. Mol. Catal., 56, 284 (1989)
- Sclafani A, Palmisano L, Schiavello M, J. Phys. Chem., 94, 829 (1990)
- Kumar PNK, Ph. D. Thesis, University of Twente, 7500 AE Enschede, The Netherlands (1993)
- Chhabra V, Pillai V, Mishra BK, Morrone A, Shah DO, Langmuir, 11, 33 (1995)
- Larbot A, Alary JA, Fabre JP, Guizard C, Cot L, Better Ceramics Through Chemistry Ⅱ, 659 (1986)
- Primet M, Pichat P, Mathieu MV, J. Phys. Chem., 75, 1221 (1971)
- Loepz T, Gomez R, Sanchez E, Tzompantzi F, Vera L, J. Sol-Gel Sci. Technol., 22, 99 (2001)
- Osseo-Asare K, Arriagada FJ, in Better Ceramics Through Chemistry Ⅲ, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Materials Research Society) (1988)
- Fletcher PDI, Howe AM, Robinson BH, J. Chem. Soc.-Faraday Trans., 183, 985 (1987)
- Fendler JH, Chem. Rev., 87, 887 (1987)
- Barnickel P, Wokaun A, Sayer W, Eicke HF, J. Colloid Interface Sci., 148, 80 (1991)
- Wolf K, Yazdani A, Yates P, J. Air Waste Manage. Assoc., 41, 1055 (1991)
- Turchi CS, Ollis DF, J. Catal., 122, 178 (1990)