화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.3, 479-485, June, 2008
에어로졸공정에 의한 다공성 TiO2 분말의 제조 및 공극특성
Fabrication and Characterization of Porous TiO2 Powder by Aerosol Process
E-mail:
초록
Aerosol templating 법을 이용하여 두 종류의 출발물질 용액(TiO2 나노분말/PS 콜로이드 혼합용액 및 TTIP/PS 혼합 용액)으로부터 mesopore 및 macropore를 동시에 가지는 다공성 TiO2 나노구조체 분말을 제조하였다. TiO2에 대한 PS 분말의 혼합비 및 반응기 온도가 다공성 나노구조체 분말의 특성에 미치는 영향을 조사하였다. TiO2 나노분말을 출발 물질로 사용한 경우, PS/TiO2 무게 혼합비를 0.79에서 1.31로 증가시킴에 따라 macropore의 증가가 SEM을 통하여 관찰되었으며 비표면적과 mesopore volume은 각각 31.6 m2/g에서 39.1 m2/g으로, 0.068 cm3/g에서 0.89 cm3/g으로 증가하였다. TTIP 전구체를 사용한 경우, 동일조건에서 제조한 분말의 비표면적 및 mesopore volume이 각각 67% 및 75% 감소하였다.
Porous TiO2 nanostructured particles containing both mesopores and macropores were fabricated by utilizing an aerosol templating method from two kinds of starting materials (colloidal mixture of TiO2 nanoparticles and PS particles, and that of TTIP solution and PS particles). The effects of mixing ratio of PS to TiO2 and reactor temperature on the particle properties were investigated. When TiO2 nanoparticles were used as starting materials, the increase of macropores number was observed by SEM and the specific surface area and total pore volume were increased from 31.6m2/g to 39.1 m2/g and 0.068 cm3/g to 0.089 cm3/g, respectively, by increasing the weight mixing ratio of PS/TiO2 from 0.79 to 1.31. When TTIP was used as precursor, the specific surface area and mesopore volume of particles prepared at same condition decreased by 67% and 75%, respectively.
  1. Ollis DF, Pelizzetti E, Serpone N, Environ. Sci. Technol., 25(9), 1523 (1991)
  2. Matthews RW, Pure Appl. Chem., 64(9), 1285 (1992)
  3. Hadjiivanov KI, Klissurski, DG, Chem. Soc. Rev., 25(1), 61 (1996)
  4. Mills A, Le Hunte S, J. Photochem. Photobiol. A-Chem., 108(1), 1 (1997)
  5. Kavan L, Fattakhova D, Krtil P, J. Electrochem. Soc., 146(4), 1375 (1999)
  6. C, Zheng Z, Zhang F, Yang S, Wang H, Chen L, Zhang F, Wang X, Liu X, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 169(1-4), 21 (2000)
  7. Savage NO, Akbar SA, Dutta PK, Sens. Actuators B-Chem., 72(3), 239 (2001)
  8. Grtzel M, J. Sol-Gel Sci. Technol., 22(1-2), 7 (2001)
  9. Fotou GP, Vemury S, Pratsinis SE, Chem. Eng. Sci., 49(24B), 4939 (1994)
  10. Arabi-Katbi OI, Wegner K, Pratsinis SE, Ann. Chim. Sci. Mat., 27(6), 37 (2002)
  11. Jang HD, Kim SK, Mater. Res. Bull., 36(3-4), 627 (2001)
  12. Jung KY, Park SB, Jang HD, Catal. Commun., 5(9), 491 (2004)
  13. Nakaso K, Okuyama K, Shimada M, Pratsinis SE, Chem. Eng. Sci., 58(15), 3327 (2003)
  14. Jang HD, Jeong J, Aerosol Sci. Technol., 23(4), 553 (1995)
  15. Velev OD, Jede TA, Lobo RF, Lenhoff AM, Nature, 389(6650), 447 (1997)
  16. Holland BT, Blanford CF, Stein A, Science, 281, 538 (1998)
  17. Wijnhoven JEGJ, Vos WL, Science, 281, 802 (1998)
  18. Stein A, Microporous Mesoporous Mater., 44-45, 227 (2001)
  19. Iskandar F, Mikrajuddin, Okuyama, Nano Lett., 1(5), 231 (2001)
  20. Iskandar F, Mikrajuddin, Okuyama K, Nano Lett., 2(4), 389 (2002)
  21. Iskandar F, Nandiyanto ABD, Yun KM, Hogan CJ, Okuyama K, Biswas P, Adv. Mater., 19(10), 1408 (2007)
  22. Landfester K, Bechthold N, Tiarks F, Antonietti M, Macromolecules, 32(16), 5222 (1999)