화학공학소재연구정보센터
Clean Technology, Vol.14, No.2, 144-151, June, 2008
디젤과 디메틸에테르의 연료로서의 환경적 특성 비교
Comparisons of Environmental Characteristics between Diesel and Dimethyl Ether as Fuels
E-mail:
초록
천연가스로부터 합성가스를 거쳐 제조되는 디메틸에테르가 디젤 대체연료로서 가지는 환경적 가치를 평가하기 위하여 전과정평가를 실시하였다. 전과정평가를 위한 시스템 경계 안에는 디젤과 디메틸에테르 두 물질에 대한 원료 물질의 획득부터 연소를 통한 최종 소비까지의 과정이 포함되었다. 디젤과 디메틸에테르 각각에 대한 목록분석을 실시한 결과 천연자원의 소모와 대기오염물질의 배출이 두 물질과 관련된 가장 중요한 환경오염인자라는 것을 알 수 있었다. 두 물질에 대한 영향평가의 결과로부터 인간의 건강과 생태계 보전이라는 측면에서는 디메틸에테르가 환경적으로 우수하지만 천연자원의 고갈이라는 측면에서는 디젤이 보다 우수함을 알 수 있었다. 목록분석과 영향평가의 결과를 바탕으로 디젤 대체연료로서 디메틸에테르가 가지는 환경적 가치를 제고하기 위한 방안을 제시하였다.
Life cycle assessment was carried out to evaluate the environmental values of dimethylas a diesel alternative fuel with the assumption of dimethyl ether production from natural gas via synthesis gas. The whole life cycles from raw material acquisitions to the final usages of diesel and dimethyl ether were involved in the assessment. Inventory analysis showed that the most significant environmental impacts came from resource depletions and air emissions. Impact assessment revealed that dimethyl ether was environmentally better in the aspect of human health and ecosystem quality but worse in resource depletions compared with diesel fuel. Suggestions for environmental improvement of dimethyl ether as a diesel alternative fuel were prepared based on the assessment results.
  1. Lee YJ, News Inf. Chem. Eng., 20(5), 515 (2002)
  2. Oh J, News Inf. Chem. Eng., 20(5), 516 (2002)
  3. Curran MA, Environmental Life Cycle Assessment, McGraw-Hill, New York (1996)
  4. Goedkoop M, Effting S, Collignon M, The Ecoindicator 99, A Damage Oriented Method for Life Cycle Impact assessment, Manual for Designers, Pre Consultants, Amersfoort (2000)
  5. International Standard Organization, ISO 14040, 1st ed., International Standard Organization (1997)
  6. Vigon BW, Tolle DA, Cornaby BW, Latham HC, Harrison CL, Boguski TL, Hunt RG, Sellers JD, Life Cycle Assessment: Inventory Guidelines and Principles, EPA/600/R-92/245, U. S. EPA Office of Research and Development, Washington, D. C. (1993)
  7. Fava JA, Denison R, Jones B, Curran MA, Vigon B, Selke S, Barnum J, A Technical Framework for Life-Cycle Assessment, SETAC and SETAC Foundation for Environmental Education (1991)
  8. Fava J, Consoli F, Denison R, Dickson K, Mohin T, Vigon B, A Conceptual Framework for Life-Cycle Impact Assessment, SETAC and SETAC Foundation for Environmental Education (1993)
  9. Fava J, Jensen AA, Lindfors L, Pomper S, Smet B, Warren J, Vigon B, Life Cycle Assessment Data Quality : Conceptual Framework, SETAC and SETAC Foundation for Environmental Education (1994)
  10. IKP, GaBi 3.0 User’s Manual, IKP (1998)
  11. Pre, SimaPro 5.0 User’s Manual, Pre (2001)
  12. Ecobilan, TEAM 3.0 User’s Manual, Ecobilan (1999)
  13. ANL, Compilation of Air Pollutant Emission Factors, Volume I, 5th ed., EPA AP-42, Argonne National Laboratory (1996)
  14. Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H, An Overview of Biodiesel and Petroleum Diesel Life Cycles, TP-580-24772, National Renewable Energy Laboratory (1998)
  15. U. S. EPA, Profile of the Oil and Gas Extraction Industry, EPA/310-R-99-006, U. S. EPA Office of Compliance, Washington, D. C. (2000)
  16. API, The Generation of Wastes and Secondary Materials in the Petroleum Refining Industry, American Petroleum Institute (1991)
  17. Spath P, Mann M, Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming, TP-570-27637, National Renewable Energy Laboratory (2001)
  18. AspenTeck, Physical Property Data : Aspen Plus Steady State Simulation 10.0, Aspen Technology Inc. (1999)