화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.1, 10-17, January, 2008
Comparison of adsorption characteristics according to polarity difference of acetone vapor and toluene vapor on silica-alumina fixed-bed reactor
E-mail:
Adsorption characteristics of acetone vapor and toluene vapor on silica-alumina were investigated using a fixed-bed reactor. The equilibrium adsorption capacity of acetone vapor on silica-alumina was about four times higher than that of toluene vapor because of polarity difference between adsorbent and adsorbate. As inlet concentration and linear velocity were increased, MTZ (mass transfer zone) and LUB (length of unused bed) were increased. In binary vapor systems, the phenomenon of "roll-up" was observed in the breakthrough curves. Thus the more strongly adsorbed adsorbate (acetone) displaces the weaker adsorbate (toluene), leading to a rise in the effluent concentration of the less strongly adsorbed adsorbate above the inlet concentration. Temperature changes in silica-alumina bed during adsorption of acetone vapor and toluene vapor were occurred near 30 min and the increase of temperature by adsorption heat was in the range of 6-7℃. (c) 2007 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
  1. Lillo-Rodenas MA, Carratala-Abril J, Cazurla- Amoros D, Linares-Solano A, Fuel Process. Technol., 77, 331 (2002)
  2. Tancrede M, Wilson R, Zeise L, Crouch EAC, Atmos. Environ., 21, 2187 (1987)
  3. Ruddy EN, Carroll LA, Chem. Eng. Prog., 89, 28 (1993)
  4. Braeuer P, Salem M, Harting P, Quitzsch K, Sep. Purif. Technol., 12(3), 255 (1997)
  5. Huang Z, Kang F, Liang K, Hao J, J. Hazard. Mater., B98, 107 (2003)
  6. Kim TY, Jeng SJ, Kim SJ, Kim JH, Cho SY, J. Ind. Eng. Chem., 10(4), 531 (2004)
  7. Wang K, King B, Do DD, Sep. Purif. Technol., 17(1), 53 (1999)
  8. Shin JW, Yoo KS, Park SY, Song KS, J. Ind. Eng. Chem., 12(3), 418 (2006)
  9. Blocki SW, Environ. Prog., 12, 226 (1993)
  10. Ko SR, Park YT, Lim CK, Lee HK, Abstracts presented at the 1997, KSEE Meeting, 169 (1997)
  11. Sheintuch M, Matatov-Meytal YI, Catal. Today, 53(1), 73 (1999)
  12. Torrents A, Damera R, Hao OJ, J. Hazard. Mater., 54, 141 (1997)
  13. Yun JH, Choi DK, Kim SH, AIChE J., 44(6), 1344 (1998)
  14. Jee JG, Lee SJ, Lee CH, Korean J. Chem. Eng., 21(6), 1183 (2004)
  15. Hussey F, Gupta A, Proc. AWMA Meeting (1996)
  16. Kang SW, Min BH, Suh SS, J. Korean Ind. Eng. Chem., 16(1), 131 (2005)
  17. Wang F, Wang W, Huang S, Teng J, Xie Z, Chin. J. Chem. Eng., 15, 376 (2007)
  18. Moon JH, Bae YS, Hyun SH, Lee CH, J. Membr. Sci., 285(1-2), 343 (2006)
  19. Ahn H, Lee CH, Chem. Eng. Sci., 59(13), 2727 (2004)
  20. TAKEUCHI Y, IWAMOTO H, MIYATA N, ASANO S, HARADA M, Sep. Technol., 5(1), 23 (1995)
  21. Pires J, Carvahlo A, Manuela B, Microporous Mesoporous Mater., 43, 277 (2001)
  22. Park JW, Lee YW, Choi DK, Lee SS, J. Ind. Eng. Chem., 9(4), 381 (2003)
  23. McCabe WL, Smith JC, Harriot P, Unit Operations of Chemical Engineering, sixth ed., McGraw Hill, 2005 1140 pp. (2005)
  24. Reynolds TD, Richards PA, Unit Operations and Process in Environmental Engineering, second ed., PWD Publishing, 1998 798 pp.
  25. Yoon YH, Nelson JH, Am. Ind. Hyg. Assoc. J., 45, 509 (1984)
  26. William JA, Invitation to Organic Chemistry, first ed., Freedom Academy Publishing Co. (2000)
  27. Lee JJ, Yu HY, J. Korean Soc. Environ. Engrs., 20, 509 (1998)
  28. Hwang KS, Choi* DK, Gong SY, HWAHAK KONGHAK, 36(2), 159 (1998)
  29. Cho KC, Shon BH, Jo YM, Oh KJ, J. Korean Soc. Environ. Engrs., 21, 2017 (1999)
  30. Kim HS, Park YS, J. Kor. Soc. Environ. Engrs., 25, 977 (2003)
  31. Jeon HJ, Seo G, Introduction of Catalysis, fourth ed., Hanlim Publishing (2002)
  32. Min BM, Yoo KP, Kim SH, HWAHAK KONGHAK, 32(2), 195 (1994)
  33. Oh KJ, Cho KC, Jeon DY, Jo YM, J. Kor. Soc. Environ. Engrs., 21, 1967 (1999)
  34. Lee MG, Lee SW, Lee SH, Korean J. Chem. Eng., 23(5), 773 (2006)