화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.1, 28-37, January, 2008
The investigation of the potential of activated hard shell of apricot stones as gold adsorbents
E-mail:
Activated carbon is the most widely used adsorbent for the recovery of metal ions from dilute solutions. In this work the potential of activated carbon produced from hard shell of Iranian apricot stones for the gold recovery from electro-plating wastewater was investigated. The effect of parameters such as dose of activated carbon, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption was studied. The equilibrium data were analyzed using the Langmuir and Freundlich isotherms. Isotherms have been used to obtain thermodynamic parameters. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3 h. In addition. the adsorbed gold could be eluted from this carbon by improved stripping method. The process involves contact of gold laden activated carbon with a strong base at ambient temperatures followed by elution with an aqueous solution containing an organic solvent. It was found that activated carbon produced from hard shell of apricot stones have high potential to be used instead of imported commercial activated carbons in gold adsorption processes. (c) 2007 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
  1. Do DD, Adsorption Analysis: Equilibrium and Kinetics, Imperial College Press, London (1998)
  2. Dorbrowksi A, Adv. Colloid Interface Sci., 93, 135 (2001)
  3. Streat M, Naden D, Ion Exchange and Sorption Process in Hydrometallurgy, John Wiley & Sons (1987)
  4. Bansal RC, Donnet JB, Stoeckli F, Active Carbon, Maecel Dekker Inc., New York, USA (1988)
  5. Patric JW, Porosity in Carbons, Edward Arnold, London, UK, (Chapter 9) (1995)
  6. Evans MJB, Halliop E, MacDonald JAF, Carbon, 37, 269 (1999)
  7. Hayashi J, Horikawa T, Takeda I, Muroyama K, Nasir Ani F, Carbon, 40, 2381 (2002)
  8. Zanzi R, Bai X, Capdevila P, Bjornbom E, in: Proceedings of the 6th World Congress of Chemical Engineering, Melbourne, Australia (2001)
  9. Toles CA, Marshall WE, Johns MM, Carbon, 35(9), 1407 (1997)
  10. Philip CA, Girgis BS, J. Chem. Technol. Biotechnol., 67, 248 (1996)
  11. Gergova K, Petrov N, Minkova V, J. Chem. Technol. Biotechnol., 56, 77 (1993)
  12. Heschel W, Klose E, Fuel, 74(12), 1786 (1995)
  13. Aygun A, Yenisoy-Karakas S, Duman I, Microporous Mesoporous Mater., 66, 189 (2003)
  14. Diaz-Diez MA, Gomez-Serrano V, Gonzalez CF, Cuerda-Correa EM, Macias-Garcia A, Appl. Surf. Sci., 238(1-4), 309 (2004)
  15. Arriagad R, Garcia R, Hydrometallurgy, 46, 171 (1997)
  16. Ladeiria ACQ, Figueira MEM, Ciminrlli VST, Miner. Eng., 16(6), 585 (1993)
  17. Teirlinck PA, Petersen FW, Sep. Sci. Technol., 30(16), 3129 (1995)
  18. Petersen FW, Van Deventer JSJ, Chem. Eng. Sci., 46(12), 3150 (1991)
  19. Petersen FW, Vandeventer JS, Sep. Sci. Technol., 32(13), 2087 (1997)
  20. Deventer JSJ, Merwe PF, Miner. Eng., 7(1), 71 (1994)
  21. Belsak AL, McConnell TF, Williams CA, Desal NC, EP Patent no. 0425102A1 (1990)
  22. Banini G, Stange W, Miner. Eng., 7(5-6), 591 (1994)
  23. Darnall DW, Gardea JL, McPheson RA, US Patent no. 5176889 (1993)
  24. Bryson AW, Miner. Process Extractive Metall, 15, 145 (1995)
  25. Yalcin M, Arol AI, Hydrometallurgy, 63, 201 (2002)
  26. Syna N, Valix M, Miner. Eng., 16, 421 (2003)
  27. Nakbanpote W, Thiravetyan P, Kalambaheti C, Miner. Eng., 15, 549 (2002)
  28. Kaghazchi T, Soleimani M, in: Proceedings of the 7th Asia-Pacific, in: Proceedings of the 7th Asia-Pacific International Symposium on Combustion and Energy Utilization, Hong Kong, R. China, (2004), p. 243.
  29. Soleimani M, Kaghazchi T, in: Proceedings of the 5SCCE &3SCPE, Tehran, Iran (2005)
  30. Soleimani M, Kaghazchi T, Chem. Eng. Technol., 30(5), 649 (2007)
  31. Genceli E, Apak E, Razvigorova M, Petrov N, Minkova V, Ekinci E, Fuel Process. Technol., 75(2), 97 (2002)
  32. Yang T, Lua AC, Microporous Mesoporous Mater., 63, 113 (2003)
  33. Lua AC, Yang T, J. Colloid Interface Sci., 274(2), 594 (2004)
  34. Savova D, Apak E, Ekinci E, Yardim F, Petrov N, Budinova T, Razvigorova M, Minkova V, Biomass Bioenerg., 21(2), 133 (2001)
  35. Soleimani M, Ph.D. Thesis, AmirKabir University of Technology, Iran (2007)
  36. Yeganeh MM, Kaghazchi T, Soleimani M, J. Chem. Eng. Technol., 29(10), 1247 (2006)
  37. Soleimani M, Kaghazchi T, AmirKabir J. Sci. Eng., 15(60), 139 (2004)
  38. Brunauer SB, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  39. ASTM Standard, Designation D4607-94, Standard test method for determination of iodine number of activated carbon (2000)
  40. Snell FD, Ettre LS, Encyclopedia of Industrial Chemical Analysis, vol. 8, Interscience, New York, USA (1968)
  41. Toles CA, Marshall WE, Johns MM, Wartelle LH, McAloon A, Bioresour. Technol., 71(1), 87 (2000)
  42. ASTM Standard, Designation D2866-94, Standard test method for total ash content of activated carbon (2000)
  43. Ahmedna M, Marshall WE, Rao RM, Bioresour. Technol., 71(2), 113 (2000)
  44. Ng C, Losso JN, Marshall WE, Rao RM, Bioresour. Technol., 84(2), 177 (2002)
  45. Montgomery DC, Design and Analysis of Experiments, John Wiley & Sons, New York (1991)
  46. Roy KR, A Primer on the Taguchi Method, Van Nostrand Reinhold, New York (1990)
  47. Klauber C, Langmuir, 7, 2153 (1991)