화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.1, 89-93, January, 2008
Preparation of ferroelectric PZT thin films by plasma enhanced chemical vapor deposition using metalorganic precursors
E-mail:
The low temperature and non-thermal equilibrium process is the major advantage of plasma enhanced chemical vapor deposition (PECVD) method for thin film deposition. In this study, the preparation of lead zirconate titanate (PZT) thin films by PECVD has been evaluated. As-deposited PZT thin films prepared via PECVD with Pb(C2H5)(4), Ti(O-i-C3H7)(4) and Zr(O-i-C4H9)(4) source had an amorphous phase and transformed into a crystalline structure from the annealing temperature of around 500C under an oxygen ambient. Change of Pb content in the film did not occur under a wide range of annealing temperatures and times, but the surface morphology became coarser with an increase of Pb content. The dielectric constant was strongly affected by the PZT film thickness. Typically the dielectric constant of PZT (Zr/Ti = 54/46) film was 572 at a thickness of 240 nm. Additionally, the film had a remnant polarization, 2P(r),of 42 mu C/cm(2) and a coercive filed, E-r, Of 88 kV/cm. (c) 2007 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
  1. Scott JF, Paz de Araujo CA, McMillan LD, Proc. IEEE Ultrason. Symp., 299 (1989)
  2. Paz de Araujo CA, McMillan LD, Melni- ck BM, Cuchiaro JD, Scott JF, Ferroelectrics, 104, 241 (1990)
  3. Carrano J, Sudhama C, Al Tasch JL, Miller W, IEDM, 255 (1989)
  4. Krupanidhi SB, Maffei N, Sayer M, El- Assal K, J. Appl. Phys., 54, 6601 (1983)
  5. Fukami T, Minemura I, Hiroshima Y, Osa- da T, Jpn. J. Appl. Phys., 30, 2155 (1991)
  6. Ryder DF, Raman NK, J. Electron. Mater., 21, 971 (1992)
  7. Chen J, Udayakumar KR, Brooks KG, Cross LE, J. Appl. Phys., 71, 4465 (1992)
  8. Takahashi Y, Yamaguchi K, J. Mater. Sci., 25, 3950 (1990)
  9. Tuttle BA, Headley TJ, Bunker BC, Schwartz RW, Zender TJ, Hernandez CL, Goodnow DC, Tissot RJ, Michael J, Carim AH, J. Mater. Res., 7, 1876 (1992)
  10. Peng CH, Desu SB, Appl. Phys. Lett., 61, 16 (1992)
  11. Choi JH, Kim HG, J. Appl. Phys., 74, 6413 (1993)
  12. Wang CH, Won DJ, Choi DJ, J. Korean Phys. Soc., 37, 1062 (2000)
  13. Horwitz JS, Grabowski KS, Chrisey DB, Leuchtner RE, Appl. Phys. Lett., 59, 1565 (1991)
  14. Auciello O, Mantese L, Duarte J, Chen X, Rou SH, Kingon AI, Schreiner AF, Krauss AR, J. Appl. Phys., 73, 5197 (1993)
  15. Mihara T, Mochizuki S, Kimura S, Maka- be R, Jpn. J. Appl. Phys., 31, 1872 (1992)
  16. Nishida K, Shirakata K, Osada M, Katoda T, J. Cryst. Growth, 272(1-4), 789 (2004)
  17. Lee WG, Woo SI, J. Ind. Eng. Chem., 10(3), 379 (2004)
  18. Lee WG, Woo SI, Integer. Ferroelectr., 5, 107 (1994)
  19. Krupanidhi SB, Hu H, Kumar V, J. Appl. Phys., 71, 376 (1992)
  20. Kushida K, Takeuchi H, Appl. Phys. Lett., 50, 1800 (1987)
  21. Surowiak Z, Brodacki J, Zasojz H, Rev. Sci. Instrum., 49, 1350 (1978)