화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.2, 247-251, March, 2008
Study on synthesis of low surface area activated carbons using multi-step activation for use in electric double layer capacitor
E-mail:
Low surface area activated carbon derived from compact mesocarbon microbeads (MCMB2010) was synthesized using a lower amount of KOH (1:1 weight ratio of KOH to MCMB) than normally used followed by electrochemical activation. The specific capacitance of the activated carbon heat treated at between 650 and 900 degrees C was increased up to ca. 118 F/cc (half cell base, 750 degrees C-heat treated sample) after electrochemical activation, even with a low surface area carbon (<50 m(2)/g). The morphology of low surface area activated MCMB determined by FE-SEM showed a smooth carbon surface without pores. The charge/discharge profiles were similar to those of conventional activated carbon. The specific capacitance of the activated samples increased with increasing heat treatment up to 850 degrees C after electrochemical activation. However, it was lower for the sample heat treated at 900 degrees C. (C) 2008 Published by Elsevier B.V. on behalf of The Korean Society of Industrial and Engineering Chemistry.
  1. Conway BE, J. Electrochem. Soc., 138, 1539 (1991)
  2. Conway BE, Electrochemical Supercapacitors, Plenum Publishing, New York (1999)
  3. Takehara J, Ohkubo N, Miyaoka K, Hukuda T, Electrochem. Capacitors II, (October 13), 190
  4. Sasaki M, Araki S, No I, Proceedings of JSAE, No., 20015569 (p. 102-01) (2001)
  5. Sasaki M, Notsu I, Ara S, Proceedings of JSAE, No., 20005215 (p. 2-00) (2000)
  6. Notsu I, Okazaki A, Nish S, Proceedings of JSAE, No., 20005566 (p. 104-00) (2000)
  7. Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE, J. Electrochem. Soc., 147, 2845 (2000)
  8. Liu ZL, Lin XH, Lee JY, Zhang W, Han M, Gan LM, Langmuir, 18(10), 4054 (2002)
  9. Lee YH, An KH, Lee J, Young L, Seong C, Encyclopedia Nanosci. Nanotechnol., 1, 625 (2001)
  10. Liu HY, Wang KP, Teng HS, Carbon, 43, 559 (2005)
  11. Subramanian V, Zhu H, Wei B, J. Electrochem. Soc., 8, 827 (2006)
  12. Lazano-Castello D, Carzorla-Amoros D, Linares-Solano A, Shiraishi S, Kurihara H, Oya A, Carbon, 41, 1765 (2003)
  13. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M, J. Power Sources, 101(1), 109 (2001)
  14. Fang QL, Evans DA, Roberson SL, Zheng JP, J. Electrochem. Soc., 148(8), A833 (2001)
  15. Jiang JH, Kucernak A, Electrochim. Acta, 47(15), 2381 (2002)
  16. Mastragostino M, Arbizzani C, Soavi F, Solid State Ion., 148(3-4), 493 (2002)
  17. Chen WC, Wen TC, Teng HS, Electrochim. Acta, 48(6), 641 (2003)
  18. Oberlin A, in: P.A. Thrower (Ed.), Chemistry and Physics of Carbon, vol. 22, Marcel Dekker., Inc., New York and Basel (1989)
  19. Wennerberg AN, Active carbon process and composition. US Patent 4,082,694 (1978)
  20. Lozano-Castello D, Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A, Carbon, 39, 741 (2001)
  21. Shen ZM, Xue RS, Fuel Process. Technol., 84(1-3), 95 (2003)
  22. Edwards IAS, in: H. Marsh (Ed.), Introduction to Carbon Science, Butterworths, London, 1989 (Chap. 1)
  23. Takeuchi M, Maruyama T, Koike K, Mogami A, Oyama T, Kobayashi H, Electrochemistry, 69, 487 (2001)
  24. Mitani S, Saito K, Yoon SH, Korai Y, Mochida I, Carbon, 43, 2960 (2005)
  25. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL, Science, 313, 1760 (2006)