Korean Journal of Chemical Engineering, Vol.25, No.4, 804-807, July, 2008
Efficient cell surface display of organophosphorous hydrolase using N-terminal domain of ice nucleation protein in Escherichia coli
E-mail:
Recombinant Escherichia coli systems expressing organophosphorous hydrolase (OPH) have been used for detoxifying toxic organophosphate compounds. However, a whole cell biocatalyst system has an intrinsic problem due to substrate diffusion limitation by its cell membrane. As a strategy for reducing this diffusion barrier limitation to enhance whole cell biocatalytic activity, we engineered E. coli cells to target OPH on cell surface using ice nucleation protein (InaK) as a surface targeting motif, especially N-terminal domain of InaK (InaK-N). The whole cell OPH activities of the cells expressing InaK/OPH fusion constructs were higher (~2.5-fold for InaK-N and ~5.7-fold for combined N- and C-terminal domain of InaK (InaK-NC)) than that of the cells expressing cytosolic OPH. Interestingly, the membrane targeting efficiency of the cells expressing InaK-N/OPH fusion proteins was ~2.2-fold higher compared to the cells expressing InaK-NC/OPH even though both whole cell and total cell lysate OPH activities were lower. Therefore, we found that the small size N-terminal domain of InaK is more efficient for targeting OPH on the cell surface, and the surface display of OPH using N-terminal InaK domain can reduce the mass-transfer problem in whole cell bioconversion system.
Keywords:Cell Surface Display;Ice Nucleation Protein;N-Terminal Domain;Organophosphorus Hydrolase;Escherichia coli;Whole Cell Biocatalyst
- Donarski WJ, Dumas DP, Heitmeyer DP, Lewis VE, Raushel FM, Biochemistry, 28, 4650 (1989)
- McDaniel CS, Harper LL, Wild JR, J. Bacteriol., 170, 2306 (1988)
- Mulbry WW, Karns JS, J. Bacteriol., 171, 6740 (1989)
- Grimsley JK, Scholtz JM, Pace CN, Wild JR, Biochemistry, 36, 14366 (1997)
- Lai K, Stolowich NJ, Wild JR, Arch. Biochem. Biophys., 318, 59 (1995)
- Lewis VE, Donarski WJ, Wild JR, Raushel FM, Biochemistry, 27, 1591 (1988)
- Serdar CM, Gibson DT, Biomed. Tech., 3, 567 (1985)
- Chen W, Mulchandani A, Trends Biotechnol., 16, 71 (1998)
- Mansee AH, Chen W, Mulchandani A, Biotechnol. Bioprocess Eng., 5, 436 (2000)
- Kang DG, Lim GB, Cha HJ, J. Biotechnol., 118, 379 (2005)
- Kang DG, Choi SS, Cha HJ, Biotechnol. Prog., 22, 406 (2006)
- Lee JS, Shin KS, Pan JG, Kim CJ, Nat. Biotechnol., 18, 645 (2000)
- Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss R, Nat. Biotechnol., 15, 29 (1997)
- Lee JC, Park SY, Choi CY, Chung J, Lee MS, Biotechnol. Bioprocess Eng., 12, 282 (2007)
- Richins RD, Kaneva I, Mulchandani A, Chen W, Nat. Biotechnol., 15, 984 (1997)
- Sousa C, Cebolla A, Lorenzo V, Nat. Biotechnol., 14, 1017 (1996)
- Shimazu M, Mulchandani A, Chen W, Biotechnol. Prog., 17, 76 (2001)
- Yoo HJ, Seo JH, Kang DG, Cha HJ, Korean J. Chem. Eng., 24(1), 99 (2007)
- Li L, Kang DG, Cha HJ, Biotechnol. Bioeng., 85(2), 214 (2004)
- Kang DG, Kim JYH, Cha HJ, Biotechnol. Lett., 24, 879 (2002)
- Caldwell SR, Newcomb JR, Schlecht KA, Raushel FM, Biochemistry, 30, 7438 (1991)