화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.4, 382-387, August, 2008
밀봉 재료에 따른 페롭스카이트 막의 산소투과 특성
Effect of Sealant Materials on Oxygen Permeation in Perovskite Oxide Membrane
E-mail:
초록
착체중합법을 이용하여 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 조성의 산화물을 합성하였으며, 합성된 분말은 압축 성형 후 1080 ℃에서 소결하여 치밀한 페롭스카이트 분리막을 제조하였다. 밀봉 재료로 gold ring, Pyrex ring 및 Pyrex 분말을 사용하여 가스누출 실험을 수행하였다. Ba0.5Sr0.5Co0.8Fe0.2O3-δ 분리막의 산소투과량 분석결과 온도가 증가함에 따라 산소투과량은 증가하였고, 900 ℃에서 0.74mL/min.cm2의 값을 나타내었다. 950 ℃에서 밀봉 재료에 따른 투과 특성 분석 결과, gold ring을 이용할 경우 높은 산소투과량을 보인 반면, Pyrex를 밀봉재로 사용할 경우 낮은 투과량을 보였다. 이는 Pyrex를 밀봉재로 이용할 경우 분리막 표면으로 유리가 침투하여 유효 산소투과면적을 감소시켰기 때문이며, 광화학 현미경 분석으로 Pyrex 유리의 확산.침투를 확인하였다.
Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxide was synthesized by polymerized complex method. Dense membrane of perovskite oxide was prepared using as-prepared powder by pressing and sintering at 1080 ℃. Leakage test was conducted on the membrane sealed by gold ring, Pyrex ring or Pyrex powder as a sealing material. The oxygen permeation flux of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane increased with increasing temperature and was 0.74 mL/min.cm2 at 900 ℃. In the case of the membrane applied by sealing material, oxygen permeation flux of the membrane using gold ring at 950 ℃ was higher than that using Pyrex materials because the undesired spreading of Pyrex glass materials in the membrane led to the reduction of effective permeation area. Microphotograph analysis results for the membrane after permeation test confirmedthe diffusion of Pyrex glass seal into the membrane.
  1. Thambimuthu K, Soltanieh M, Abandes JC, IPCC special report on carbon dioxide capture and storage, ed. O. Davidson, B. Metz, Cambridge University Press, London (2005)
  2. Hyun SH, Choi YM, J. Kor. Ceram. Soc., 29, 403 (1992)
  3. Hyun SH, Kang BS, Choi DJ, J. Kor. Ceram. Soc., 29, 970 (1992)
  4. Shin SH, Oh CS, Choi SC, J. Kor. Ceram. Soc., 34, 553 (1997)
  5. Lim KT, Cho TL, Lee KS, Woo SK, Park KB, Kim JW, J. Kor. Ceram. Soc., 38, 787 (2001)
  6. Kim JP, Park JH, Kim KY, J. Energy & Climate Change, 2, 75 (2007)
  7. Burggraff AJ, Boumesster JM, Fundamentals of inorganic membrane science and technology, ed. A. J. Burggraff, L. Cot, Elsevier, Amsterdam (1996)
  8. Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N, Solid State Ion., 48, 207 (1991)
  9. Teraoka Y, Zhang HM, Furukawa S, Yamzoe N, Chem. Lett., 1743 (1985)
  10. Teraoka Y, Zhang HM, Okamoto K, Yamazoe N, Mater. Res. Bull., 23, 51 (1988)
  11. Qiu L, Lee TH, Liu LM, Yang YL, Jacobson AJ, Solid State Ion., 76(3-4), 321 (1995)
  12. Pei S, Kleefisch MS, Kobylinski TP, Faber J, Udovich CA, Zhangmccoy V, Dabrowski B, Balachandran U, Mieville RL, Poeppel RB, Catal. Lett., 30(1-4), 201 (1995)
  13. Kruidhof H, Bouwmeester HJM, Doorn RHEV, Burggraaf J, Solid State Ion., 63, 816 (1993)
  14. Shao ZP, Xiong GX, Tong JH, Dong H, Yang WS, Sep. Purif. Technol., 25(1-3), 419 (2001)
  15. Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX, J. Membr. Sci., 172(1-2), 177 (2000)
  16. Park JH, Park SD, Korean J. Chem. Eng., 24(5), 897 (2007)
  17. Liu M, Wang R, Li DF, Liang DT, Mater. Chem. Phys., 102(2-3), 132 (2007)
  18. Li SG, Jin WQ, Huang P, Xu NP, Shi J, Lin YS, J. Membr. Sci., 166(1), 51 (2000)
  19. Zeng Y, Lin YS, Swartz SL, J. Membr. Sci., 150(1), 87 (1998)
  20. Tan LA, Gu XH, Yang L, Jin WQ, Zhang LX, Xu NP, J. Membr. Sci., 212(1-2), 157 (2003)
  21. Tsai CY, Dixon AG, Ma YH, Roser WR, Pascucci MR, J. Am. Ceram. Soc., 81, 1438 (1998)