Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.4, 421-426, August, 2008
용액공정을 이용한 다중벽 탄소 나노튜브/폴리스티렌(MWCNT/PS) 복합체 합성 및 열적 거동
Synthesis of Multi-Walled Carbon Nanotube/Polystyrene (MWCNT/PS) Composites by Solution Process and Their Thermal Behavior
E-mail:
초록
본 연구에서는 다양한 조성의 다중벽 탄소 나노튜브/폴리스티렌 복합체들을 유화제를 이용한 용액공정을 이용하여 제조하였다. 이때, 분자량이 다른 3종의 폴리스티렌(PS-1 : Μn = 101500 g/mole, PS-2 : Μn = 89900 g/mole, PS-3 : Μn = 85000 g/mole)을 사용하였다. 복합체에서 매트릭스로 사용된 폴리스티렌의 임계흐름온도(Tcf∼195 ℃) 이상과 이하인 210 ℃ 및 180 ℃에서의 열적 거동을 동적 유변측정기를 이용하여 측정하였다. 복합체의 저장 탄성율, 손실탄성율 및 용융점도는 복합 체내에서 다중벽 탄소 나노튜브 함량이 증가함에 따라 증가하였으며, 용융점도의 경우에는 다중벽 탄소 나노튜브 함량이 2 wt%에서 5 wt% 사이에서 가장 큰 증가가 관찰되었다. 210 ℃의 유변특성 거동에 의하면, 특정 다중벽 탄소 나노튜브 함량에서 복합체의 점성 특성이 탄성특성으로 전이되는 현상이 관찰되었으며, 이때 다중벽 탄소 나노튜브 함량은 MWCNT/PS-1, MWCNT/PS-2 및 MWCNT/PS-3 조성에 대해 각각 3.5 wt%, 3.2 wt 및 3.0 wt%를 나타내었다.
Multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites with various MWCNT contents were prepared by using a solution process with an aid of surfactant. Particularly, PS’s with 3 different molecular weights (Μn = 101500 g/mole for PS-1, Μn = 89900 g/mole for PS-2, and Μn = 85000 g/mole for PS-3) were used in this study. Thermal behavior of these composites was examined by using an oscillator rheometer at 210 ℃ and 180 ℃, of above and below the critical flow temperature (Tcf∼195 ℃) of PS matrix, respectively. The storage and loss modulus, and the complex viscosity of these composites increased with increasing MWCNT content at both temperatures. Largest increases in the frequency-dependent moduli and complex viscosity were observed between 2 wt% and 5 wt% of MWCNTs at 210 ℃ and 180 ℃. Only the composite at 210 ℃ showed the rheological phase transition from a viscous-dominant to an elastic-dominant behavior of the composites at a certain MWCNT content. The MWCNT content at the rheological phase transition of MWCNT/PS composites generally increased with decreasing molecular weight of PS, and was measured to be 3.5 wt% for MWCNT/PS-1, 3.2 wt% for MWCNT/PS-2, and 3.0 wt% for MWCNT/PS-3 composites.
- Zeng HC, in Handbook of Organic-Inorganic Hybird Materials and Nanocoomposites Vol. 2, H. S. Nalwa Ed., pp.151, American Scientific Pubilisher, Los Angeles (2003)
- Poole CP, Owens FJ, Introduction to Nanotechnology, p. 114, Wiley, New Jersey (2003)
- Kang JW, Hwang HJ, J. Korean Phys. Soc., 46, 875 (2005)
- Jang JW, Kim SH, Lee CE, Lee TJ, Lee CJ, Kim HS, Kim EH, Noh SJ, J. Korean Phys. Soc., 42, S985 (2003)
- Qian D, Dickey EC, Andrews R, Rantell T, Appl. Phys. Lett., 76, 2868 (2000)
- Salvetat JP, Briggs AD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L, Phys. Rev. Lett., 82, 944 (1999)
- Jin L, Bower C, Zhou O, Appl. Phys. Lett., 73, 1197 (1998)
- Choi ES, Brooks JS, Eaton DJ, Al-Haik MS, Hussaini Y, Garmestani H, Li D, Dahmen K, J. Appl. Phys., 94, 6034 (2003)
- Shaffer MSP, Fan X, Windle AH, Carbon, 36, 1603 (1998)
- Potschke P, Bhattacharyya AR, Janke A, Eur. Polym. J., 40, 137 (2004)
- Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS, Macromol. Rapid Commun., 24(18), 1070 (2003)
- Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS, Chem. Mater., 15, 3198 (2003)
- Lin Y, Rao AM, Sadanadan B, Kenik EA, Sun YP, J. Phys. Chem. B, 106(6), 1294 (2002)
- Cui S, Canet R, Derre A, Couzi M, Delhaes P, Carbon, 41, 797 (2003)
- Bahr JL, Tour JM, J. Mater. Chem., 12, 1952 (2002)
- Thostenson ET, Chou TW, J. Phys. D-Appl. Phys., 35, L77 (2002)
- Satio T, Matsushige K, Tanake K, Physica B, 323, 208 (2002)
- Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K, Chem. Phys. Lett., 370(5-6), 820 (2003)
- Poulin P, Vigolo B, Launois P, Carbon, 40, 1741 (2002)
- Schadler LS, Giannaris SC, Ajayan PM, Appl. Phys. Lett., 73, 3842 (1998)
- Frankland SJV, Harik VM, Surf. Sci., 86, 2079 (2002)
- Park SD, Han DH, Teng D, Kwon Y, Choi GY, J. Korean Phys. Soc., 48, 476 (2006)
- Choi GY, Kim HG, Kim YH, Seo CW, Choi JH, Han DH, Oh DH, Min KE, J. Appl. Polym. Sci., 86(4), 917 (2002)
- Mutel AT, Kamal MR, in Two Phase Polymer Systems, A. Utracki Ed. pp. 305, Carl Hanser, New York (1991)
- Kitano T, Kataoka T, Nagatsuka Y, Rheol. Acta, 23, 20 (1984)
- Cole KS, Cole RH, J. Chem. Phys., 9, 341 (1941)
- Nakayama N, Harrell ER, in Current Topics in Polymer Science, vol. II: Rheology and Polymer Processing/Multiphase Systems, R. M. Ottenbrite, L. A. Utracki, and S. Inoue Eds. pp. 149, Carl Hanser, New York (1987)
- Han CD, Lem KW, Polym. Eng. Rev., 2, 135 (1983)
- Chuang HK, Han CD, J. Appl. Polym. Sci., 29, 2205 (1984)
- Han CD, Kim JK, Macromolecules, 22, 383 (1989)
- Ahn DU, Kwak SY, Macromol. Mater. Eng., 286, 17 (2001)
- Liu CY, Zhang J, He JS, Hu GH, Polymer, 44(24), 7529 (2003)
- Abdel-Goad M, Potschke P, J. Non-Newton. Fluid Mech., 128(1), 2 (2005)
- Potschke P, Fornes TD, Paul DR, Polymer, 43(11), 3247 (2002)