화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.4, 421-426, August, 2008
용액공정을 이용한 다중벽 탄소 나노튜브/폴리스티렌(MWCNT/PS) 복합체 합성 및 열적 거동
Synthesis of Multi-Walled Carbon Nanotube/Polystyrene (MWCNT/PS) Composites by Solution Process and Their Thermal Behavior
E-mail:
초록
본 연구에서는 다양한 조성의 다중벽 탄소 나노튜브/폴리스티렌 복합체들을 유화제를 이용한 용액공정을 이용하여 제조하였다. 이때, 분자량이 다른 3종의 폴리스티렌(PS-1 : Μn = 101500 g/mole, PS-2 : Μn = 89900 g/mole, PS-3 : Μn = 85000 g/mole)을 사용하였다. 복합체에서 매트릭스로 사용된 폴리스티렌의 임계흐름온도(Tcf∼195 ℃) 이상과 이하인 210 ℃ 및 180 ℃에서의 열적 거동을 동적 유변측정기를 이용하여 측정하였다. 복합체의 저장 탄성율, 손실탄성율 및 용융점도는 복합 체내에서 다중벽 탄소 나노튜브 함량이 증가함에 따라 증가하였으며, 용융점도의 경우에는 다중벽 탄소 나노튜브 함량이 2 wt%에서 5 wt% 사이에서 가장 큰 증가가 관찰되었다. 210 ℃의 유변특성 거동에 의하면, 특정 다중벽 탄소 나노튜브 함량에서 복합체의 점성 특성이 탄성특성으로 전이되는 현상이 관찰되었으며, 이때 다중벽 탄소 나노튜브 함량은 MWCNT/PS-1, MWCNT/PS-2 및 MWCNT/PS-3 조성에 대해 각각 3.5 wt%, 3.2 wt 및 3.0 wt%를 나타내었다.
Multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites with various MWCNT contents were prepared by using a solution process with an aid of surfactant. Particularly, PS’s with 3 different molecular weights (Μn = 101500 g/mole for PS-1, Μn = 89900 g/mole for PS-2, and Μn = 85000 g/mole for PS-3) were used in this study. Thermal behavior of these composites was examined by using an oscillator rheometer at 210 ℃ and 180 ℃, of above and below the critical flow temperature (Tcf∼195 ℃) of PS matrix, respectively. The storage and loss modulus, and the complex viscosity of these composites increased with increasing MWCNT content at both temperatures. Largest increases in the frequency-dependent moduli and complex viscosity were observed between 2 wt% and 5 wt% of MWCNTs at 210 ℃ and 180 ℃. Only the composite at 210 ℃ showed the rheological phase transition from a viscous-dominant to an elastic-dominant behavior of the composites at a certain MWCNT content. The MWCNT content at the rheological phase transition of MWCNT/PS composites generally increased with decreasing molecular weight of PS, and was measured to be 3.5 wt% for MWCNT/PS-1, 3.2 wt% for MWCNT/PS-2, and 3.0 wt% for MWCNT/PS-3 composites.
  1. Zeng HC, in Handbook of Organic-Inorganic Hybird Materials and Nanocoomposites Vol. 2, H. S. Nalwa Ed., pp.151, American Scientific Pubilisher, Los Angeles (2003)
  2. Poole CP, Owens FJ, Introduction to Nanotechnology, p. 114, Wiley, New Jersey (2003)
  3. Kang JW, Hwang HJ, J. Korean Phys. Soc., 46, 875 (2005)
  4. Jang JW, Kim SH, Lee CE, Lee TJ, Lee CJ, Kim HS, Kim EH, Noh SJ, J. Korean Phys. Soc., 42, S985 (2003)
  5. Qian D, Dickey EC, Andrews R, Rantell T, Appl. Phys. Lett., 76, 2868 (2000)
  6. Salvetat JP, Briggs AD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L, Phys. Rev. Lett., 82, 944 (1999)
  7. Jin L, Bower C, Zhou O, Appl. Phys. Lett., 73, 1197 (1998)
  8. Choi ES, Brooks JS, Eaton DJ, Al-Haik MS, Hussaini Y, Garmestani H, Li D, Dahmen K, J. Appl. Phys., 94, 6034 (2003)
  9. Shaffer MSP, Fan X, Windle AH, Carbon, 36, 1603 (1998)
  10. Potschke P, Bhattacharyya AR, Janke A, Eur. Polym. J., 40, 137 (2004)
  11. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS, Macromol. Rapid Commun., 24(18), 1070 (2003)
  12. Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS, Chem. Mater., 15, 3198 (2003)
  13. Lin Y, Rao AM, Sadanadan B, Kenik EA, Sun YP, J. Phys. Chem. B, 106(6), 1294 (2002)
  14. Cui S, Canet R, Derre A, Couzi M, Delhaes P, Carbon, 41, 797 (2003)
  15. Bahr JL, Tour JM, J. Mater. Chem., 12, 1952 (2002)
  16. Thostenson ET, Chou TW, J. Phys. D-Appl. Phys., 35, L77 (2002)
  17. Satio T, Matsushige K, Tanake K, Physica B, 323, 208 (2002)
  18. Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K, Chem. Phys. Lett., 370(5-6), 820 (2003)
  19. Poulin P, Vigolo B, Launois P, Carbon, 40, 1741 (2002)
  20. Schadler LS, Giannaris SC, Ajayan PM, Appl. Phys. Lett., 73, 3842 (1998)
  21. Frankland SJV, Harik VM, Surf. Sci., 86, 2079 (2002)
  22. Park SD, Han DH, Teng D, Kwon Y, Choi GY, J. Korean Phys. Soc., 48, 476 (2006)
  23. Choi GY, Kim HG, Kim YH, Seo CW, Choi JH, Han DH, Oh DH, Min KE, J. Appl. Polym. Sci., 86(4), 917 (2002)
  24. Mutel AT, Kamal MR, in Two Phase Polymer Systems, A. Utracki Ed. pp. 305, Carl Hanser, New York (1991)
  25. Kitano T, Kataoka T, Nagatsuka Y, Rheol. Acta, 23, 20 (1984)
  26. Cole KS, Cole RH, J. Chem. Phys., 9, 341 (1941)
  27. Nakayama N, Harrell ER, in Current Topics in Polymer Science, vol. II: Rheology and Polymer Processing/Multiphase Systems, R. M. Ottenbrite, L. A. Utracki, and S. Inoue Eds. pp. 149, Carl Hanser, New York (1987)
  28. Han CD, Lem KW, Polym. Eng. Rev., 2, 135 (1983)
  29. Chuang HK, Han CD, J. Appl. Polym. Sci., 29, 2205 (1984)
  30. Han CD, Kim JK, Macromolecules, 22, 383 (1989)
  31. Ahn DU, Kwak SY, Macromol. Mater. Eng., 286, 17 (2001)
  32. Liu CY, Zhang J, He JS, Hu GH, Polymer, 44(24), 7529 (2003)
  33. Abdel-Goad M, Potschke P, J. Non-Newton. Fluid Mech., 128(1), 2 (2005)
  34. Potschke P, Fornes TD, Paul DR, Polymer, 43(11), 3247 (2002)