화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.25, No.5, 1008-1013, September, 2008
Synthesis of isoamyl salicylate using a novel mesoporous titania superacid as a catalyst
E-mail:
Mesoporous titania was prepared by hydrothermal method and mesoporous titania solid superacid catalyst was prepared by wet impregnation method. The structure and property of the as-prepared catalysts were characterized by means of XRD, FT-IR and N2 physical adsorption. Isoamyl salicylate was synthesized by using concentrated sulfuric acid and solid superacid as catalyst, respectively. The effects of the molar ratio of raw material, the amount of catalyst, reaction time and reaction temperature on the yield of the product were systematically investigated. The results show that mesoporous titania solid superacid is a good catalyst for synthesizing isoamyl salicylate. The optimum conditions of isoamyl salicylate synthesized by using mesoporous titania solid superacid are the following: the molar ratio of salicylic acid to isoamyl alcohol is 1 : 4, the quantity of catalyst is 1.6 g, the reaction time is 5 h, the reaction temperature is 130 oC and the yield can reach 94.6%.
  1. Clark JH, Accounts Chem. Res., 35, 791 (2002)
  2. Wang J, Yang P, Fan M, Yu W, Jing X, Zhang M, Duan X, Mater. Lett., 61, 2235 (2007)
  3. Chen FT, Ma HZ, Wang B, J. Hazard. Mater., 147(3), 964 (2007)
  4. Lopez T, Bosch P, Tzompantzi F, Gomez R, Navarrete J, Lopez-Salinas E, Llanos ME, Appl. Catal. A: Gen., 197(1), 107 (2000)
  5. Reddy BM, Sreekanth PM, Reddy VR, J. Mol. Catal. A-Chem., 225(1), 71 (2005)
  6. Reddy BM, Sreekanth PM, Lakshmanan P, Khan A, J. Mol. Catal. A-Chem., 244(1-2), 1 (2006)
  7. Yadav GD, Pathre GS, Microporous Mesoporous Mater., 89, 16 (2006)
  8. Yang H, Lu R, Wang L, Mater. Lett., 57, 1190 (2003)
  9. Arata K, Matsuhashi H, Hino M, Nakamura H, Catal. Today, 81(1), 17 (2003)
  10. Corma A, Garcia H, Chem. Rev., 103(11), 4307 (2003)
  11. Corma A, Chem. Rev., 95(3), 559 (1995)
  12. Okuhara T, Chem. Rev., 102(10), 3641 (2002)
  13. Harmer MA, Sun Q, Appl. Catal. A: Gen., 221(1-2), 45 (2001)
  14. Yin HL, Tan ZY, Liao YT, Feng YJ, J. Environ. Radioactivity, 87, 227 (2006)
  15. Wang Z, Shui H, Zhang D, Gao J, Fuel, 86, 835 (2007)
  16. Jiang YX, Chen XM, Mo YF, Tong ZF, J. Mol. Catal. A-Chem., 213(2), 231 (2004)
  17. Choo ST, Nam IS, Ham SW, Lee JB, Korean J. Chem. Eng., 20(2), 273 (2003)
  18. Sohn JR, Bae JH, Korean J. Chem. Eng., 17(1), 86 (2000)
  19. Wang Z, Jiang T, Du Y, Chen K, Yin H, Mater. Lett., 60, 2493 (2006)
  20. Pavasupree S, Jitputti J, Ngamsinlapasathian S, Yoshikawa S, Mater. Res. Bull., 43, 149 (2008)
  21. Hattori H, Appl. Catal. A: Gen., 222(1-2), 247 (2001)
  22. Barrett EP, Joyner LG, Halend PP, J. Am. Chem. Soc., 73, 373 (1951)
  23. Churchill MR, Churchill DG, Huynh MHV, Takeuchi KJ, Distefano AJ, Jameson DL, J. Chem. Crys., 29, 659 (1999)
  24. Blin JL, Leonard A, Su BL, J. Phys. Chem. B, 105(26), 6070 (2001)
  25. Blin JL, Leonard A, Su BL, Chem. Mater., 13, 3542 (2001)
  26. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenkert JL, J. Am. Chem. Soc., 114, 10834 (1992)
  27. Yu JC, Yu JG, Zhao JC, Appl. Catal. B: Environ., 36(1), 31 (2002)
  28. Yu HG, Yu JG, Cheng B, Lin J, J. Hazard. Mater., 147(1-2), 581 (2007)
  29. Yu JG, Wang GH, Cheng B, Zhou MH, Appl. Catal. B: Environ., 69(3-4), 171 (2007)