화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.5, 922-930, October, 2008
요소용액을 이용한 파일럿규모 SNCR 공정에 대한 CFD 모델링 및 모사
Computational Fluid Dynamics(CFD) Simulation for a Pilot-scale Selective Non-catalytic Reduction(SNCR) Process Using Urea Solution
E-mail:
초록
질소산화물(NOx) 저감을 위한 선택적 무촉매 환원(SNCR; selective non-catalytic reduction) 공정의 성능은 유속, 반응온도 그리고 반응물간의 혼합과 같은 공정변수에 민감하다. 따라서 효율적인 SNCR 공정의 설계와 운전을 위하여 속도장, 온도장, 및 화학물질들의 농도 분포에 대한 이해가 필수적이다. 본 연구에서는 150 kW LPG 버너가 장착되고, 요소용액을 환원제로 사용하는 파일럿 규모 SNCR 공정에 대하여 액적모델과 결합된 2차원 난류반응흐름 전산유체역학(CFD; computational fluid dynamics) 모델을 개발하고, 이 모델은 실험결과를 통하여 검증된다. 난류반응 CFD 모델에서는 NOx 저감율과 NH3-slip을 예측하기 위하여 7개 반응식으로 이루어진 요소용액과 NOx와의 반응기작을 이용한다. 이러한 모델을 이용한 CFD 모사결과는 온도와 NSR(normalized stoichiometric ratio)에 따른 NOx 저감율에서 실험결과와 최대 20% 이내에서 차이를 보여주고 있으며, NH3-slip에 대하여는 실험결과와 모사결과 사이에 유사한 경향성을 얻었다.
The selective non-catalytic reduction(SNCR) performance is sensitive to the process parameters such as flow velocity, reaction temperature and mixing of reagent(ammonia or urea) with the flue gases. Therefore, the knowledge of the velocity field, temperature field and species concentration distribution is crucial for the design and operation of an effective SNCR injection system. In this work, a full-scale two-dimensional computational fluid dynamics(CFD)-based reacting model involving a droplet model is built and validated with the data obtained from a pilot-scale urea-based SNCR reactor installed with a 150 kW LPG burner. The kinetic mechanism with seven reactions for nitrogen oxides(NOx) reduction by urea-water solution is used to predict NOx reduction and ammonia slip. Using the turbulent reacting flow CFD model involving the discrete droplet phase, the CFD simulation results show maximum 20% difference from the experimental data for NO reduction. For NH3 slip, the simulation results have a similar tendency with the experimental data with regard to the temperature and the normalized stoichiometric ratio(NSR).
  1. Cremer MA, Montgomery CJ, Wang DH, Heap MP, Chen JY, Proceedings of the Combustion Institute, 28, 2427 (2000)
  2. Wendt JOL, Linak WP, Groff PW, Srivastava RK, AIChE J., 47(11), 2603 (2001)
  3. Muzio LJ, Quartucy GC, Cichanowicz JE, Int. J. Environ. Pollut., 17, 4 (2002)
  4. Tayyeb Javed M, Irfana N, Gibbs BM, J. Environ. Manag., 83, 251 (2007)
  5. Lee JB, Kim SD, J. Chem. Eng. Jpn., 29(4), 620 (1996)
  6. Lim YI, Yoo KS, Jeong SM, Kim SD, Lee JB, Choi BS, HWAHAK KONGHAK, 35(1), 83 (1997)
  7. Muzio LJ, Quartucy GC, Prog. Energy Combust. Sci., 23(3), 233 (1997)
  8. Alzueta MU, Bilbao R, Millera A, Oliva M, Ibanez JC, Energy Fuels, 12(5), 1001 (1998)
  9. Gentemann AMG, Caton JA, “Flow Reactor Experiments on the Selective Non-Catalytic Removal (SNCR) of Nitric Oxide using a Urea-Water Solution,” Proceedings of the 21st German Flame Day Conference, Combustion and Furnaces, University of Cottbus, Germany, 9-10(2003)
  10. Baukal CE, Hayes R, Grant M, Singh P, Foote D, Environ. Prog., 23, 19 (2004)
  11. Heggemann M, Wintergerste T, Chem. Eng. Technol., 27(9), 982 (2004)
  12. Chacon J, Sala JM, Blanco JM, Energy Fuels, 21(1), 42 (2007)
  13. Han XH, Wei XL, Schnell U, Hein KRG, Combust. Flame, 132(3), 374 (2003)
  14. Miller JA, Bowman CT, Prog. Energy Combust. Sci., 15, 287 (1989)
  15. Brouwer J, Heap MP, Pershing DW, Smith PJ, “A Model for Prediction of Selective Non-catalytic Reduction of Nitrogen Oxides by Ammonia, Urea, and Cyanuric Acid with Mixing Limitations in the Presence of CO,” Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Italy, 2117-2124(1996)
  16. Montgomery CJ, Swensen DA, Harding TV, Cremer MA, Bockelie MJ, Advances in Engineering Software, 33, 59 (2002)
  17. Skjoth-Rasmussen MS, Holm-Christensen O, Ostberg M, Christensen TS, Johannessen T, Jensen AD, Glarborg P, Livbjerg H, Comput. Chem. Eng., 28(11), 2351 (2004)
  18. DOE topical report, “Engineering Development of Coal-fired High Performance Power Systems, Phase II: Selective Non-catalytic Reduction System Development,” Report number: DOE/PC/95144-T4, United Technologies Research center, USA, 1997 (http://www.osti.gov/bridge)
  19. Duo W, Dam-Johansen K, Ostergaard K, Canadian J. Chem. Eng., 70, 1014 (1992)
  20. Ostberg M, Damjohansen K, Chem. Eng. Sci., 49(12), 1897 (1994)
  21. Park SY, Yoo KS, Lee JK, Park YK, Korean Chem. Eng. Res., 44(5), 540 (2006)
  22. Fluent User Guide, Fluent 6.3 Documentation, Fluent Inc., 2007
  23. Gran IR, Magnussen BF, Combust. Sci. Technol., 119(1-6), 191 (1996)
  24. Pope SB, Combust. Theory and Modeling, 1, 41 (1997)
  25. Birkhold F, Meingast U, Wassermann P, Deutschmann O, Appl. Catal. B: Environ., 70(1-4), 119 (2007)
  26. Abramzon B, Sirignano WA, Int. J. Heat Mass Transfer, 32, 1605 (1989)