화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.5, 945-948, October, 2008
초음파 혼합에 근거한 에폭시 나노복합체의 제조와 특성
Synthesis and Characterization of Epoxy Based Nanocomposite Materials Using an Ultrasonicator
E-mail:
초록
나노복합체는 높은 기계적 강도, 내열성, 그 밖의 많은 장점들로 인하여 첨가제에 따라 자동차, 우주항공 그리고 생체분야에 응용되어 사용되어지고 있다. 클로자이트(Cloisite) 15A 존재하의 에폭시 수지를 바탕으로 한 나노복합체를 합성하고 TEM, XRD, TGA, 그리고 DMA 등을 이용하여 분석하였다. 첨가제로 사용된 클레이의 층간간격(d-space)의 영향을 알아보기 위하여 클로자이트 20A 존재 하에서도 비슷한 나노복합체를 합성하였다. 나노복합체의 제조 시에 전통적으로 이용되어져온 핫플레이트와 자석을 이용한 제조법이외에도 초음파를 이용하여 나노복합체를 제조하였으나 두 경우 모두 나노복합체의 구조가 삽입형 구조를 얻어 구조면에서의 혼합의 영향이 없었다. 클레이가 존재하지 않았을 때에 비하여 5 wt%의 클로자이트 15A 존재 하에서 20분간 초음파로 혼합시의 복합체의 저장 탄성률이 10% 증가됨을 보였다. 일반적으로 클로자이트 15A 존재 하에서의 복합체가 클로자이트 20A 존재 하에서의 복합체보다 좋은 저장 탄성률을 보였다.
Nanocomposite materials provides efficient reinforcement, thermal endurance, and many other advantages depending on the additives used, with applications in the aerospace, automotive, and biomedical industries. Here, epoxy based nanocomposites were synthesized in the presence of Cloisite 15A and characterized with TEM, XRD, TGA, and DMA. To determine the effect of the clay d-spacing, Cloisite 20A was also used to synthesize the nanocompostes. In addition to the traditional hot plate method, an ultrasonicator was used to investigate the effect of different types of mixing on the properties of the nanocomposite; no significant effect was found. An examination of the nanocomposite morphology revealed that all the nanocomposites synthesized yielded an intercalated structure. When 5 wt% of Cloisite 15A was used with 20 min sonication time, the storage modulus increased 10% over the neat(no clay) nanocomposite. In general, the presence of Cloisite 15A produced a better storage modulus than Cloisite 20A.
  1. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O, J. Mat. Res., 8, 1179 (1993)
  2. Giannelis EP, Appl. Organomet. Chem., 12, 675 (1998)
  3. Gilman JW, Awad WH, Davis RD, Shields J, Harris RH, Jr Davis C, Morgan AB, Sutto TE, Callahan J, Trulove PC, DeLong HC, Chem. Mater., 14, 3776 (2002)
  4. Zhen W, Pinnavaia TJ, Chem. Mater., 10, 3769 (1998)
  5. Meador MA, Annual Rev. of Mat. Sci., 28, 599 (1998)
  6. Choi YS, Chung IJ, Korean Chem. Eng. Res., 46(1), 23 (2008)
  7. Wang Z, Massam J, Pinnavaia TJ, In Polymer-clay Nanocomposites, Pinnavaia TJ, Beall GW, Eds., Wiley series in polymer science, Wiley, New York, 127-149(2000)
  8. Vaia RA, Maguire JF, Chem. Mater., 19, 2736 (2007)
  9. Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC, Chem. Mater., 13, 3516 (2001)
  10. Theodore M, MS Thesis, Tuskegee University, AL, USA(2003)
  11. Jan IN, Lee TM, Chiou KC, Lin JJ, Ind. Eng. Chem. Res., 44(7), 2086 (2005)
  12. Dean D, Walker R, Theodore M, Hampton E, Nyairo E, Polymer, 46(9), 3014 (2005)