화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.3, 489-496, May, 1996
범퍼 커버용 열가소성 폴리올레핀 수지의 개발 : 1. 폴리프로필렌 매트릭스의 영향
Development of Thermoplastic Polyolefins for Bumper Cover : 1. Effect of Polypropylene Matrix
초록
폴리프로필렌 (PP)/에틸렌-프로필렌 고무 블렌드에서 형태학적, 유변학적, 기계적 물성에 미치는 PP블록공중합체의 점도 및 에틸렌함량 효과에 관하여 연구하였다. 고무함량을 40wt%까지 변화시키면서 이축압출기를 사용하여 용융블렌딩을 행하였다. 주사전자현미경 사진에서 입자크기는 PP의 점도가 증가할수록 감소하는 것을 관찰하였다. 에틸렌 함량이 12%인 PP를 매트릭스로 사용하면 6%인 PP를 사용하는 것보다 EPR의 분산상태가 좋았다. 융옹지수, 인장강도, 굴곡탄성율 및 열변형온도는 고무함량에 따라 감소하였으며, 신율 및 충격강도는 고무함량 10∼20wt% 범위에서 급격히 증가하였다. 복합점도는 고무함량에 따라 단조증가하였다. Cole-Cole plot에서 70/30 및 60/40 블렌드는 반원형태로부터 벗어남을 관찰하였다.
The effect of viscosity and ethylene content of polypropylene (PP) block copolymer on morphology, rheology, and mechanical properties of PP/ethylene-propylene rubber (EPR) blends was studied. Melt blends were prepared in a twin-screw extruder varing EPR content up to 40 wt%. Scanning electron micrographs (SEM) of blends showed that the particle size was decreased with increasing the viscosity of PP The state of EPR dispersion in matrix PP having 12% ethylene was better than that having 6% ethylene. Melt index(MI), tensile strength, flexural modulus and heat distortion temperature were decreased with rubber content, however, elongation at break and impact strength at room temperature were drastically increased at 10∼20 wt% rubber addition. Complex viscosities of PP/EPR blends increased monotonically with EPR content. Cole-Cole plot showed a deviation from the semicircle in 70/30 and 60/40 blends.
  1. Birley W, Haworth B, Batchelor J, "Physics of Plastics: Processing, Properties and Materials Engineering," p. 369, Hanser, New York (1991)
  2. Mathew NM, Tinker AJ, J. Nat. Rubber Res., 1, 240 (1986)
  3. Dominggham D, "Plastics for Engineers," p. 105, Hanser, Munich (1993)
  4. Kim HG, An JH, Kim JH, Polym.(Korea), 19(6), 798 (1995)
  5. Hoppner D, Wendorff JH, Colloid Polym. Sci., 268, 500 (1990) 
  6. Dao KC, Polymer, 25, 1527 (1984) 
  7. Kalfoglou NK, Angew. Makromol. Chem., 129, 103 (1985) 
  8. Maxwell J, "Plastics in the Automotive Industry," p. 106, Woodhead Publishing Ltd., Cambridge (1994)
  9. "Automotive Plastics Report 94," Market Search Inc. (1994)
  10. Nishio T, Nomura T, Yokoi T, Iwal H, Kawamura N, SAE 920525, 121 (1992)
  11. Nomura T, Nishio T, Sato H, Sano H, Kobunshi Ronbunshu, 50, 87 (1993)
  12. Wu S, Polym. Eng. Sci., 28, 796 (1988) 
  13. Utraki LA, Dumoulin MM, Toma P, Polym. Eng. Sci., 26, 34 (1986) 
  14. Utraki LA, "Two-Phase Polymer System," p. 171, Oxford University Press, New York (1991)
  15. Walters K, "Rheometry: Industrial Application," p. 263, Research Studies Press, Chichester (1980)
  16. Schlund B, Utraki LA, Polym. Eng. Sci., 27, 359 (1987) 
  17. Wisniewski C, Marin G, Monge P, Eur. Polym. J., 20, 691 (1984) 
  18. White JL, "Polymer Compatibility and Incompatibility: Principles and Practices," ed. by K. Solc, p. 423, MMI Press, New York (1982)
  19. Chung HK, Han CD, J. Appl. Polym. Sci., 29, 2205 (1984) 
  20. Shin GS, Kim BK, J. Appl. Polym. Sci., 48, 945 (1993) 
  21. Lee MS, Chem SA, Polym. Eng. Sci., 33, 686 (1993) 
  22. Kim JH, Keskkula H, Paul DR, J. Appl. Polym. Sci., 35, 1563 (1988) 
  23. Wu S, Polymer, 26, 1855 (1985)