화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.4, 515-519, July, 2008
Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications
E-mail:
The surface of silica nanoparticles was modified with poly(ethylene glycol) methacrylate (PEGMA) or poly(propylene glycol) methacrylate (PPGMA) in order to improve the dispersion of nanoparticles in a polymer matrix. Nanosized silica particles were synthesized by the Sto¨ber method with tetraethyl orthosilicate (TEOS). Silica nanoparticles were treated with triethoxyvinylsilane (VTES) as a coupling agent to introduce reactive groups and the PEG or PPG were then grafted onto the particle surface via UV-photopolymerization. Various analytical methods, i.e., scanning electron microscopy (SEM), thermogravimetry (TG), zeta potential measurement, and water vapor adsorption measurement were used to comprehensively characterize the unmodified(pure) and modified silica particles. The SEM images of the pure and modified particles demonstrated that both particles have a spherical shape and a uniform size without agglomeration. The silica particles modified with polymers showed higher weight loss than unmodified silica particles because of the decomposition of the organic polymers grafted onto the particles. The surface modification of silica particles with polymers decreased the zeta potential values of the silica surface. Modified silica particles had lower water vapor adsorption due to the hydrophobic surface property resulting from the polymers grafted onto the silica surface. In addition, we have developed an electrical conductivity measurement as a novel method to analyze the surface properties of silica nanoparticles. The modified silica particles had lower electrical conductivity than that of unmodified silica particles.
  1. Tjong SC, Mat. Sci. Eng. R, 53, 73 (2006)
  2. Parida SK, Dash S, Patel S, Mishra BK, Adv. Colloid Interf. Sci., 121, 77 (2006)
  3. Ringward SC, Pemberton JE, Environ. Sci. Technol., 34, 259 (2000)
  4. Rajh T, Tiede DM, Thurnauer MC, J. Non-Cryst. Solids, 207, 815 (1996)
  5. Ratner BJ, Biomed. Mater. Res., 27, 837 (1993)
  6. Roy I, Ochulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasad PN, PNAS, 102, 279 (2005)
  7. Bhagat SD, Rao AV, Appl. Surf. Sci., 252(12), 4289 (2006)
  8. Kickelbick G, Prog. Polym. Sci., 28, 83 (2003)
  9. Charinpanitkul T, Ruenjaikaen K, Sunsap P, Wijitamornlert A, Kim KS, J. Ind. Eng. Chem., 13(6), 992 (2007)
  10. Lee SI, Kim DB, Sin JH, Lee YS, Nah C, J. Ind. Eng. Chem., 13(5), 786 (2007)
  11. Hwang YJ, Lee YH, Oh C, Jun YD, Oh SG, J. Ind. Eng. Chem., 12(3), 380 (2006)
  12. Kim KJ, White JL, J. Ind. Eng. Chem., 7(1), 50 (2001)
  13. von Werne T, Patten TE, J. Am. Chem. Soc., 123(31), 7497 (2001)
  14. Rong MZ, Zhang MQ, Ruan WH, Mater. Sci. Technol., 22, 787 (2006)
  15. Wu ZJ, Xiang H, Kim T, Chun MS, Lee K, J. Colloid Interface Sci., 304(1), 119 (2006)
  16. Li YS, Li B, Han NY, Xu BJ, J. Chromatogr. A, 1021, 183 (2003)
  17. Chevalier PM, Ou DL, J. Sol.Gel Sci. Technol., 26, 597 (2003)
  18. Arkhireeva A, Hay JH, Lane JM, Manzqno M, Masters H, Oware W, Shaw SJ, J. Sol.Gel Sci. Technol., 31, 31 (2004)
  19. Miller CR, Vogel R, Surawski PPT, Jack KS, Corrie SR, Trau M, Langmuir, 21(21), 9733 (2005)
  20. Shin SH, Kim HI, J. Ind. Eng. Chem., 7(3), 147 (2001)
  21. Perruchot C, Khan MA, Kamitsi A, Armes SP, von Werne T, Patten TE, Langmuir, 17(15), 4479 (2001)
  22. Hegde ND, Rao AV, Appl. Surf. Sci., 253(3), 1566 (2006)
  23. Stober W, Fink A, Bohn E, J. Colloid Interf. Sci., 26, 62 (1968)
  24. Che J, Luan B, Yang X, Lu L, Wang X, Mater. Lett., 59, 603 (2005)
  25. Xu GL, Zhang JJ, Song GZ, Powder Technol., 134(3), 218 (2003)
  26. Pham KN, Fullston D, Sagoe-Crentsil K, J. Colloid Interface Sci., 315(1), 123 (2007)