화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.25, No.6, 1539-1545, November, 2008
Effects of silyl concentration, hydrogen concentration, ion flux, and silyl surface diffusion length on microcrystalline silicon film growth
E-mail:
Two sets of μc-Si : H films as a function of pressure were fabricated by very-high-frequency plasma enhanced chemical vapor deposition (VHF-PECVD). Deposition rate, Raman crystallinity, and photo/dark conductivity were investigated under both low and high power conditions. A plasma fluid model and a surface hydride-dependent precursor diffusion model were constructed to understand the evolution of microcrystalline silicon under low and high power conditions. Silyl, hydrogen, ion flux, silyl surface diffusion length are believed to have much influence on film growth rate, crystallinity and photo electronic properties. But the interesting point is that under a certain condition one or more of these parameters dominate μc-Si : H growth, while other parameters have weak influence. Short-life radicals are found to be the possible major factor on the deterioration of photo sensitivity of μc-Si : H films.
  1. Matsuda A, Takai M, Nishimoto T, Kondo M, Sol. Energy Mater. Sol. Cells, 78, 3 (2003)
  2. Takai M, Nishimoto T, Kondo M, Matsuda A, Appl. Phys. Lett., 77, 2828 (2000)
  3. Kim SK, Stassions EC, Lee HH, Korean J. Chem. Eng., 11(2), 67 (1994)
  4. Kim DH, Lee IJ, Rhee SW, Moon SH, Korean J. Chem. Eng., 15, 572 (1995)
  5. Bera K, Farouk B, Lee YH, J. Electrochem. Soc., 146(9), 3264 (1999)
  6. Dagel DJ, Mallouris CM, Doyle JR, J. Appl. Phys., 79, 8735 (1996)
  7. Tachibana K, Nishida M, Harima H, Urano Y, J. Phys. D: Appl. Phys., 17, 1727 (1984)
  8. Herrebout D, Bogaerts A, Yan M, Gijbels R, et al., J. Appl. Phys., 90, 570 (2001)
  9. Herrebout D, Bogaerts A, Gijbels R, et al., IEEE Trans. Plasma Sci., 31, 659 (2003)
  10. Gupta A, Doctor Thesis, 11, (2001)
  11. Yang HD, Wu CY, Huang J, Ding RQ, Zhao Y, Geng XH, Xiong SZ, Thin Solid Films, 472(1-2), 125 (2005)
  12. Hahn YB, Pearton SJ, Korean J. Chem. Eng., 17(3), 304 (2000)
  13. Faundez CA, Tamblay LE, Valderrama JO, Korean J. Chem. Eng., 21(6), 1199 (2004)
  14. Kim DJ, Lyoo PJ, Kim KS, Korean J. Chem. Eng., 20(2), 392 (2003)
  15. Kim DJ, Kang JY, Nasonova A, Kim KS, Choi SJ, Korean J. Chem. Eng., 24(1), 154 (2007)
  16. Nienhuis GJ, Goedheer WJ, Hamers EAG, et al., J. Appl. Phys., 82, 2060 (1997)
  17. Kurachi M, Nakamura Y, J. Phys. D, 22, 107 (1989)
  18. Perrin J, Schmitt JPM, De Rosny G, et al., Chem. Phys., 73, 383 (1982)
  19. Krishnakumar E, Srivastava SK, Contrib. Plasma Phys., 35, 395 (1995)
  20. Haaland P, J. Chem. Phys., 93, 4066 (1990)
  21. Tawara H, Kato T, At. Data Nucl. Data Tables, 36, 167 (1987)
  22. Engelhardt AG, Phelps AV, Phys. Rev., 131, 2115 (1963)
  23. Perrin J, Leroy O, Bordage MC, Contrib. Plasma Phys., 36, 3 (1996)
  24. Hickman AP, J. Chem. Phys., 70, 4872 (1979)
  25. Ganguly G, Matsuda A, Phys. Rev. B, 47, 3661 (1993)
  26. Matsuda A, Thin Solid Films, 337(1-2), 1 (1999)
  27. Guizot JL, Nomoto K, Matsuda A, Surface Science, 244, 22 (1991)
  28. Maeda K, Kuroe A, Umezu I, Phys. Rev. B, 51, 10635 (1995)
  29. Gerbi JE, Abelson JR, J. Appl. Phys., 89, 1463 (2001)
  30. Gallagher A, J. Appl. Phys., 60, 1369 (1986)
  31. Perrin J, J. Non-Cryst. Solids, 137, 639 (1991)
  32. Ganguly G, Matsuda A, J. Non-Cryst. Solids, 166, 31 (1993)
  33. Bray KR, Parsons GN, Phys. Rev. B, 65, 035311 (2001)
  34. Gupta A, Parsons GN, J. Vac. Sci. Technol. B, 18(3), 1764 (2000)
  35. Kessels WMM, Smets AHM, Marra DC, Aydil ES, Schram DC, van de Sanden MCM, Thin Solid Films, 383(1-2), 154 (2001)
  36. Doren DJ, Advances in chemical physics, John Wiley & Sons Inc, New York (1996)
  37. Heintze M, Zedlitz R, Bauer GH, J. Phys. D: Appl. Phys., 26, 1781 (1993)
  38. Robertson J, J. Appl. Phys., 87, 2608 (2000)
  39. Heintze M, Zedlitz R, J. of Non-cryst. Solids, 198-200, 1038 (1996)