화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.6, 1029-1038, December, 2008
전이금속 산화물이 고정된 하이드로탈사이트에 이산화질소 흡착
Adsorption of Nitrogen Dioxide on Transition-Metal-Oxide-Incorporated Hydrotalcites
E-mail:
초록
전이금속 산화물의 전구체가 들어있는 합성모액을 수열 반응시켜 전이금속 산화물이 고정된 하이드로탈사이트를 제조하여 이들에 대한 이산화질소의 흡착 성질을 조사하였다. 전이금속 산화물의 분산도, 이산화질소의 흡착량 및 흡착상태를 XRD, SEM, XPS, 질소 흡착등온선, 중량식 흡착법, FT-IR, 승온탈착법으로 조사하였다. 전이금속 산화물은 주로 하이드로탈사이트의 표면에 분산 담지되었으며, 철과 니켈 산화물이 고정된 하이드로탈사이트에 이산화질소가 많이 흡장되었다. 철 산화물이 표면에 분산되어 담지되면 이산화질소의 흡장량이 많지만, 철 산화물이 지나치게 많이 담지되면 덩어리져서 표면의 염기점을 차폐하므로 이산화질소의 흡장량이 오히려 줄어들었다. 철 산화물의 고정량이 적절하면 하이드로탈사이트에서 이산화질소의 흡장세기는 약해지지만, 흡장량은 많아지고 수열 안정성이 증진되었다.
Transition-metal-oxide-incorporated hydrotalcites were prepared by hydrothermal reaction of their synthetic mixtures containing precursors of transition metal oxides and their properties of nitrogen dioxide adsorption was investigated. The dispersion of transition metal oxides on the hydrotalcites and the amount and the state of nitrogen dioxide adsorbed on them were examined by using XRD, SEM, XPS, nitrogen adsorption, a gravimetric adsorption system, FT-IR spectroscopy and temperature programmed desorption techniques. Transition metal oxides were mainly incorporated on their surface and the incorporation of iron and nickel oxides to the hydrotalcites increased their adsorption amounts of nitrogen dioxide. The dispersion of iron oxide on the hydrotalcites was effective in increasing the amount of nitrogen dioxide adsorption, while too much amount of iron oxide incorporation reduced the amount of nitrogen dioxide adsorption due to masking of surface basic sites by agglomerated iron oxide. Although the incorporation of iron oxide to the hydrotalcites lowered the adsorption strength of nitrogen dioxide, the incorporation of it with a proper amount enhanced the amount of nitrogen dioxide adsorption and the stability against the hydrothermal treatment.
  1. Garin F, Appl. Catal. A: Gen., 222(1-2), 183 (2001)
  2. Botas JA, Gutierrez-Ortiz MA, Gonzalez-Marcos MP, Gonzalez-Marcos JA, Gonzalez-Velasco JR, Appl. Catal. B: Environ., 32(4), 243 (2001)
  3. Larrubia MA, Ramis G, Busca G, Appl. Catal. B: Environ., 27(3), L145 (2000)
  4. Koebel M, Elsener M, Kleemann M, Catal. Today, 59(3-4), 335 (2000)
  5. Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K, Catal. Today, 27(1-2), 63 (1996)
  6. Epling WS, Parks JE, Campbell GC, Yezerets A, Currier NW, Campbell LE, Catal. Today, 96(1-2), 21 (2004)
  7. Salasc S, Skoglundh M, Fridell E, Appl. Catal. B: Environ., 36(2), 145 (2002)
  8. Sedlmair C, Seshan K, Jentys A, Lercher JA, Catal. Today, 75(1-4), 413 (2002)
  9. Amberntsson A, Fridell E, Skoglundh M, Appl. Catal. B: Environ., 46(3), 429 (2003)
  10. Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173 (1991)
  11. Vaccari A, Appl. Clay Sci., 14, 161 (1999)
  12. Kannan S, Catal. Surv. Asia, 10, 117 (2006)
  13. Chmielarz L, Kustrowski P, Rafalska-Lasocha A, Majda D, Dziembaj R, Appl. Catal. B: Environ., 35(3), 195 (2002)
  14. Corma A, Palomares AE, Rey F, Marquez F, J. Catal., 170(1), 140 (1997)
  15. Fornasari G, Trifiro F, Vaccari A, Prinetto F, Ghiotti G, Centi G, Catal. Today, 75(1-4), 421 (2002)
  16. Silletti BA, Adams RT, Sigmon SM, Nikolopoulos A, Spivey JJ, Lamb HH, Catal. Today, 114(1), 64 (2006)
  17. Li LD, Yu JJ, Hao ZP, Xu ZP, J. Phys. Chem. C, 111, 10552 (2007)
  18. Fornasari G, Glockler R, Livi M, Vaccari A, Appl. Clay Sci., 29, 258 (2005)
  19. Morandi S, Prinetto F, Ghiotti G, Livi M, Vaccari A, Micropor. Mesopor. Mater., 107, 31 (2008)
  20. Yu JB, Jiang Z, Zhu L, Hao ZP, Xu ZP, J. Phys. Chem. B, 110(9), 4291 (2006)
  21. Yu JJ, Wang XP, Tao YX, Hao ZP, Xu ZP, Ind. Eng. Chem. Res., 46(17), 5794 (2007)
  22. Obalova L, Pacultova K, Balabanova J, Jiratova K, Bastl Z, Valaskova M, Lacny Z, Kovanda F, Catal. Today, 119(1-4), 233 (2007)
  23. Centi G, Arena GE, Perathoner S, J. Catal., 216(1-2), 443 (2003)
  24. Climent MJ, Corma A, Iborra S, Epping K, Velty A, J. Catal., 225(2), 316 (2004)
  25. Kanezaki E, J. Mater. Sci. Lett., 17(5), 371 (1998)
  26. PDF Card, #39-1346
  27. Dupin JC, Gonbeau D, Vinatier P, Levasseur A, Phys. Chem. Chem. Phys., 2, 1319 (2000)
  28. Cantrell DG, Gillie LJ, Lee AF, Wilson K, Appl. Catal. A: Gen., 287(2), 183 (2005)
  29. Marquez F, Palomares AE, Rey F, Corma A, J. Mater. Chem., 11, 1675 (2001)
  30. Brik Y, Kacimi M, Ziyad M, Bozon-Verduraz F, J. Catal., 202(1), 118 (2001)
  31. Lenglet M, Hochu F, Diirr J, Tuilier MH, Solid State Commun., 104, 793 (1997)
  32. Grosvenor AP, Kobe BA, Biesinger MC, Mclntyre NS, Surf. Interface Anal., 36, 1564 (2004)
  33. Kucherov AV, Shelef M, J. Catal., 195(1), 106 (2000)
  34. Kucherov AV, Montreuil CN, Kucherova TN, Shelef M, Catal. Lett., 56(4), 173 (1998)
  35. Ferreira OP, Alves OL, Gouveia DX, Souza Filho AG, de Paiva JAC, Mendes FJ, J. Solid State Chem., 117, 3058 (2008)
  36. Hadjiivanov KI, Catal. Rev.-Sci. Eng., 42(1-2), 71 (2000)
  37. Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR, J. Catal., 178(2), 499 (1998)