Korean Chemical Engineering Research, Vol.46, No.6, 1081-1086, December, 2008
분자 끈을 활용한 CdSe/ZnS 양자 점의 향상된 배열
Molecular Linker Enhanced Assembly of CdSe/ZnS Core-Shell Quantum Dots
E-mail:
초록
양자 점을 이용한 QD-LED(Quantum Dot - Light Emitting Device)의 소자 제작을 하기 위해서는 양자 점의 균일한 배열이 중요하다. 핵-껍질(core-shell) 구조의 CdSe/ZnS 양자 점을 기판에 고 밀도, 고 균일도로 배열하기 위하여 두 종류의 분자 끈(molecular linker)을 사용하였고, 공정의 단순화와 비용 절감을 위하여 고분자 도장인 PDMS(polydimethylsiloxane)를 이용한 미세접촉인쇄방법으로 양자 점들을 배열하였다. TiO2/ITO 기판에 양자 점을 고정 시켜주는 역할을 하는 분자 끈으로는 2-carboxyethylphosphonic acid(CAPO)를 사용하였고, 양자 점 사이의 인력을 향상시켜주는 분자 끈으로는 1,6-hexanedithiol(HDT)을 사용하였다. 양자 점들의 배열 특성을 주사전자현미경(SEM,
scanning electron microscope)과 원자 힘 현미경(AFM, atomic force microscope)으로 분석하였고, 광 발광분광기(PL, photoluminescence spectroscope)로 발광특성을 측정하였다.
QDs-LEDs(quantum dot light emitting device) should contain well-organized arrays of QDs on an electron transport layer. Thin films of CdSe/ZnS core-shell QDs were successfully fabricated on TiO2 substrates by using PDMS stamp and micro contact printing method. 2-Carboxyethylphosphonic acid(CAPO) and 1,6-hexanedithiol(HDT) were employed as molecular linkers in assembling CdSe/ZnS core-shell QDs with high-density and uniform array. The
CAPO increased the binding strength between the QDs and the substrates, and the HDT induced the strong inter-particle attractions of assembled QDs. The assembling properties of QDs thin films were characterized by SEM, AFM, optical microscope and photoluminescence spectroscope(PL).
Keywords:Quantum Dot;Molecular Linker;Micro Contact Printing;Surface Modification;Nanoparticle Assembly
- Kido J, Electroluminescence, Nippon Jitsugyo publishing Co., Ltd.(2003)
- Coe S, Woo WK, Bawendi M, Buloviæ V, Nature, 420, 800 (2002)
- Guyot P, Coe S, Material Matters, 2, 10 (2007)
- Ivanov SA, Nanda J, Piryatinski A, Achermann M, Balet LP, Bezel IV, Anikeeva PO, Tretiak S, Klimov VI, J. Phys. Chem. B, 108(30), 10625 (2004)
- Zhong XH, Han MY, Dong ZL, White TJ, Knoll W, J. Am. Chem. Soc., 125(28), 8589 (2003)
- Zhong X, Xie Y, Zhang Y, Basche T, Knoll W, Chem. Mater., 17, 4038 (2005)
- Xie RG, Zhong XH, Basche T, Adv. Mater., 17(22), 2741 (2005)
- Bailey RE, Nie SM, J. Am. Chem. Soc., 125(23), 7100 (2003)
- Li JJ, Wang YA, Guo WZ, Keay JC, Mishima TD, Johnson MB, Peng XG, J. Am. Chem. Soc., 125(41), 12567 (2003)
- Zhong XH, Feng YY, Knoll W, Han MY, J. Am. Chem. Soc., 125(44), 13559 (2003)
- Reiss P, Bleuse J, Pron A, Nano Lett., 2, 871 (2002)
- Talapin DV, Koeppe R, Gotzinger S, Kornowski A, Lupton JM, Rogach AL, Benson O, Feldmann J, Weller H, Nano Lett., 3, 1677 (2003)
- Steckel JS, Zimmer JP, Coe S, Stott NE, Bulovic V, Bawendi MG, Angew. Chem. Int. Ed., 43, 2154 (2004)
- Zhao J, Bardecker JA, Munro AM, Liu MS, Niu Y, Ding IK, Luo J, Chen B, Jen AKY, Ginger DS, Nano Lett., 6, 463 (2006)
- Xia Y, Whitesides GM, Angew. Chem. Int. Ed., 37, 550 (1998)
- Xia Y, Whitesides GM, Annu. Rev. Mater. Sci., 28, 153 (1998)
- Geissler M, Xia YN, Adv. Mater., 16(15), 1249 (2004)
- Coe-Sullivan S, Steckel JS, Woo WK, Bawendi MG, Bulovic V, Adv. Funct. Mater., 15(7), 1117 (2005)
- Coe-Sullivan S, Steckel JS, Kim LA, Bawendi MG, Buloviæ V, Proc. SPIE-Int. Soc. Opt. Eng., 5739, 108 (2005)
- Han L, Maye M, Leibowitz FL, Nam KL, Zhong CJ, J. Mater. Chem., 11, 1258 (2001)
- Wang GR, Wang L, Rendeng Q, Wang J, Luo J, Zhong CJ, J. Mater. Chem., 17, 457 (2007)
- Wang LY, Shi XJ, Kariuki NN, Schadt M, Wang GR, Rendeng Q, Choi J, Luo J, Lu S, Zhong CJ, J. Am. Chem. Soc., 129(7), 2161 (2007)