화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.6, 1135-1141, December, 2008
고온수증기전기분해용 La1-x(Ca or Sr)xCrO3(x=0 and 0.25) 연결재 재료 연구
Investigation of the La1-x(Ca or Sr)xCrO3(x=0 and 0.25) Interconnect Materials for High Temperature Electrolysis of Steam
E-mail:
초록
고온 수증기 전기분해용 La1-x(Ca or Sr)xCrO3(x=0 and 0.25) 연결재 재료의 소결도와 전기 전도도에 대해서 연구하였다. 이러한 목적으로 LaCrO3, La0.75Ca0.25CrO3(LCC)와 La0.75Sr0.25CrO3(LSC) 분말들은 공침법을 통해 합성하였으며, 결정구조는 X-Ray Diffraction(XRD)를 통해 확인하였다. 소결 특성은 상대밀도와 주사 전자현미경을 통해 분석하였고 전기 전도도는 직렬 4-단자 법으로 측정하였다. 상대 밀도 분석으로부터 도핑된 LaCrO3는 LaCrO3 보다 더 높은 소결성을 나타내었고, 입자 크기가 작을수록 소결성이 향상하는 것을 확인 할 수 있었다. 다양한 소결온도에서 얻은 LCC, LSC 시편들의 XRD 결과는 LCC와 LSC의 소결성이 2차상의 상전이와 밀접한 관련이 있다는 사실을 나타내었다. 다 시 말해, LCC는 1,300 ℃ 이상, LSC는 1,400 ℃ 이상에서 2차상이 융해됨으로써 소결성을 현저하게 향상시킨다는 것을 알 수 있었다. 그리고 비슷한 상대밀도를 가진 LCC와 LSC의 전기 전도도를 비교 측정한 결과, LCC가 LSC보다 더 높은 전기 전도도를 나타낸다는 것을 알 수 있었다.
The La1-x(Ca or Sr)xCrO3(x=0 and 0.25) interconnect materials for high temperature electrolysis of steam were investigated in views of sinterability and electrical conductivity. LaCrO3, La0.75Ca0.25CrO3 (LCC), and La0.75Sr0.25CrO3 (LSC) powders were synthesized by coprecipitation method. Crystal structure was confirmed by X-ray diffraction (XRD). The sintering characteristics were analyzed by relative density and scanning electron microscopy. The electrical conductivity was measured by a DC four probe method. From the analyses of relative densities, it was found that the doped LaCrO3 showed better sinterability than LaCrO3 and the those sinterability increased with decrease of those particle sizes. The XRD results at different sintering temperatures for LCC and LSC revealed that the sinterability is closely related to the second phase transformation, that is, the second phase melting above 1,300 ℃ for LCC and 1,400 ℃ for LSC significantly promotes the sinterability. In case of electrical conductivities of LCC and LSC, which had a similar relative density, LCC showed better electrical conductivity than LSC.
  1. Kobayashi T, Abe K, Ukyo Y, Matsumoto H, Solid State Ion., 138(3-4), 243 (2001)
  2. Chae US, Park,KM, Seon HH, Choo ST, Yun YS, Trans. of the Korean Hydrogen and New Energy Soc., 15, 98 (2004)
  3. Hino R, Haga K, Aitab H, Sekita K, Nuclear Engineering and Design, 233, 363 (2004)
  4. Simner S, Hardy J, Stevenson J, Armstrong T, J. Mater. Sci., 34(23), 5721 (1999)
  5. Zhu WZ, Deevi SC, Mater. Sci. Eng., A348, 228 (2003)
  6. Sammes NM, Ratnaraj R, Fee MG, J. Mater. Sci., 29(16), 4319 (1994)
  7. Paulik SW, Baskaran S, Armstrong TR, J. Mater. Sci., 33(9), 2397 (1998)
  8. Chakraborth A, Basu RN, Maiti HS, Mater. Lett., 45, 162 (2000)
  9. Subasri R, Mathews T, Swaminathan K, Sreedharan OM, J. Alloys Comps., 354, 193 (2003)
  10. Cheng J, Navrotsky A, J. Solid State Chemistry., 178, 234 (2005)
  11. Sakai N, Kawada T, Yokokawa H, Dokiya M, J. Mater. Sci., 25, 4531 (1990)
  12. Minh NQ, J. Am. Ceram. Soc., 76, 563 (1993)
  13. Wang J, Ponton CB, Marquis PM, J. Mater. Sci. Lett., 15(8), 658 (1996)
  14. Boroomand F, Wessel E, Bausinger H, Hilpert K, Solid State Ion., 129(1-4), 251 (2000)
  15. Zuev A, Singheiser L, Hilpert K, Solid State Ion., 147(1-2), 1 (2002)
  16. Meadowcroft DB, Wimmer JM, Amer. Ceram. Soc. Bull., 58, 610 (1979)
  17. Devi PS, Fao MS, J. Solid State Chemistry, 98, 237 (1992)
  18. Ding X, Liu Y, Gao L, Guo L, J. Alloys Comps., 425, 318 (2006)
  19. Zhou XL, Ma JJ, Deng FJ, Meng GY, Liu XQ, J. Power Sources, 162(1), 279 (2006)
  20. Zhou XL, Ma JJ, Deng FJ, Meng GY, Liu XQ, Solid State Ion., 177(39-40), 3461 (2007)
  21. Hayashi S, Fukaya K, Saito H, J. Mater. Sci. Lett., 7, 457 (1988)
  22. Sakai N, Kawada T, Yokokawa H, Dokiya M, Solid State Ionics, 40, 394 (1990)
  23. Duvigneaud PH, Pilate P, Cambier F, J. Eur. Ceram. Soc., 14, 359 (1994)
  24. Zupan K, Kolar D, Marinsek M, J. Power Sources, 86, 417 (2000)
  25. Ianculescu A, Braileanu A, Pasuk I, Zaharescu M, J. Therm. Anal. Calorim., 66, 501 (2001)
  26. Suda E, Pacaud B, Seguelong T, Takeda Y, Solid State Ion., 151(1-4), 335 (2002)
  27. Karim DP, Aldred AT, Phys. Rev. B, 20, 2255 (1979)
  28. Mori M, Yamamoto T, Itoh H, Watanabe T, J. Mater. Sci., 32(9), 2423 (1997)
  29. Armstrong TR, Stevenson JW, Hasinska K, McCready DE, J. Electrochem. Soc., 145(12), 4282 (1998)
  30. Tanasescu S, Orasanu A, Berger D, Jitaru I, Schoonman J, International Journal of Thermophysics, 26, 543 (2005)
  31. Jiang SP, Liu L, Ong KP, Wu P, Pu J, J. Power Sources, 176, 82 (2008)
  32. Yang YJ, Wen TL, Tu HY, Wang DQ, Yang JH, Solid State Ion., 135(1-4), 475 (2000)
  33. Mori H, Hiei Y, Sammes NM, Solid State Ion., 135(1-4), 743 (2000)
  34. Yokokawa H, Sakai N, Kawada T, Dokiya M, J. Electrochem. Soc., 138, 1018 (1991)
  35. Horita T, Ishikawa M, Yamaji K, Sakai N, Yokokawa H, Dokiya M, Solid State Ion., 108(1-4), 383 (1998)
  36. Mori M, Hiei Y, Sammes NM, Solid State Ion., 123(1-4), 103 (1999)
  37. Kumar A, Sujatha Devi P, Maiti HS, Chem, Mater., 16, 5562 (2004)
  38. Peck DH, Miller M, Hilpert K, Solid State Ion., 123(1-4), 59 (1999)
  39. Fergus JW, Solid State Ion., 171(1-2), 1 (2004)