화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.26, No.1, 160-164, January, 2009
Improvement of sensitivity in an interferometry by controlling pore size on the anodic aluminum oxide chip pore-widening technique
E-mail:
The pore size of an anodic aluminum oxide (AAO) chip, as well as uniform pore distribution, is one of the key parameters that should be adjusted, by choosing the appropriate etching conditions, in order to enhance the sensitivity of an interferometer. In this study, the pore size of AAO chips was optimized and characterized in order to lower the detection limit of prostate specific antigen (PSA) in an interferometric immunoassay system. After pore widening for 30-50 min, the AAO pore size was increased approximately 2-fold larger than that before pore widening. A large increase in effective optical density (ΔEOT) was obtained from the AAO chip fabricated by pore-widening technique, which thereby lowered the PSA detection limit. The present study results are not sufficiently validated to enable the immediate application to immunoassay for prostate cancer (PCa) screening, but they do demonstrate that controlling pore size can positively affect the sensitivity and lower the detection limit.
  1. Schwartz MP, Alvarez SD, Sailor MJ, Anal. Chem., 79, 327 (2007)
  2. Gao T, Rothberg LJ, Anal. Chem., 79, 7589 (2007)
  3. Janshoff A, Dancil KPS, Steinem C, Greiner DP, Lin VSY, Gurtner C, Motesharei K, Sailor MJ, Ghadiri MR, J. Am. Chem. Soc., 120(46), 12108 (1998)
  4. Lee JC, An JY, Kim BW, J. Chem. Technol. Biotechnol., 82(11), 1045 (2007)
  5. Park JS, Lim SH, Sim SJ, Chae H, Yoon HC, Yang SS, Kim BW, J. Microbiol. Biotechnol., 16, 1968 (2006)
  6. Lee W, Nielsch K, Gosele U, Nanotechnology, 18, 475713 (2007)
  7. Ghorbani M, Nasirpouri F, Irajizad A, Saedi A, Mater. Des., 27, 983 (2006)
  8. Ji GB, Chen W, Tang SL, Gu BX, Li Z, Du YW, Solid State Commun., 130, 541 (2004)
  9. Lee I, Wool RP, Thin Solid Films, 379(1-2), 94 (2000)
  10. Metzger RM, Konovalov VV, Sun M, Xu T, Zangari G, Xu B, Benakli M, Doyle WD, IEEE Trans. Magn., 36, 30 (2000)
  11. Mizeikisa V, Juodkazis S, Marcinkevicius A, Matsuo S, Misawa H, J. Photochem. Photobiol. C: Photochem. Rev., 2, 35 (2001)
  12. Sui YC, Saniger JM, Mater. Lett., 48, 127 (2001)
  13. Huang L, Reekmans G, Saerens D, Friedt JM, Frederix F, Francis L, Muyldermans S, Campitelli A, Van Hoof C, Biosens. Bioelectron., 21, 483 (2005)
  14. Cao C, Kim JP, Kim BW, Chae H, Yoon HC, Yang SS, Sim SJ, Biosens. Bioelectron., 21, 2106 (2006)
  15. Wesseling S, Stephan C, Semjonow A, Lein M, Brux B, Sinha P, Loering SA, Jung K, Clin. Chem., 49, 887 (2003)
  16. Fernadez-Sanchez C, McNeil CJ, Rawson K, Nilsson O, Anal. Chem., 76, 5649 (2004)
  17. Balk SP, Ko YJ, Burbley GJ, J. Clin. Oncol., 21, 383 (2003)
  18. Healy DA, Hayes CJ, Leonard P, McKenna L, O’Kennedy R, Trends Biotechnol., 25, 125 (2007)
  19. Oberpenning F, Hetzel S, Weining C, Brandt B, Angelis GA, Heinecke A, Lein M, Fornara P, Schmid H, Hertle L, Semjonow A, Eur. Urol., 43, 478 (2003)
  20. Masuda H, Fukuda K, Science, 268(5216), 1466 (1995)
  21. Hwang SK, Jeong SH, Hwang HY, Lee OJ, Lee KH, Korean J. Chem. Eng., 19(3), 467 (2002)