화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.1, 1-6, January, 2009
CdS 나노입자를 삽입한 Poly(2-Acetamidoacrylic acid) 수화젤 복합체의 열적 특성에 관한 연구
Study on Thermal Properties of CdS-Embedded Poly(2-Acetamidoacrylic acid) Hydrogel Composite
E-mail:,
초록
Poly(2-acetamidoacrylic acid)(PAAA) 수화젤 기판 내에 수용액상에서 이온교환에 의해 잘 분산된 CdS 나노입자를 응집이 없는 새로운 형태의 나노복합체로서 합성하였다. TEM 이미지분석을 통하여, CdS/PAAA 수화젤 복합체내에 분포되어 있는 CdS 나노입자의 평균 직경은 4.5 nm이며, 복합체의 형태는 6개월이 지나도 그대로 유지됨을 알았다. TGA와 EGA를 이용하여 복합재료의 열적 안정성이 약 100도 정도 상승하며, 건조젤 내의 CdS 입자의 함량이 70 wt% 이상이 됨을 확인할 수 있었으며 또한 각 온도에서 휘발 또는 분해된 기체를 통해 성분 물질을 확인하였다.
We report the template-based synthesis of well-dispersed CdS nanoparticles (NPs) in the interior of poly(2-acetamidoacrylic acid) (PAAA) hydrogel as a novel type of nanocomposite without particle aggregation via ion exchange in a aqueous system. As revealed by the TEM image analysis, the mean crystallite diameter of CdS NPs embedded in hydrogel composite was 4.5 nm, and the composite did not suffer any observable change after 6 months. Desorption/decomposition of CdS/PAAA hydrogel composite was studied by evolved gas analysis-gas chromatography-mass spectrometry (EGA-GCMS), and thermogravimetric analysis (TGA) methods. From the TGA data, the thermal stability of the composite system increased by ca. 100 ℃ and the content of CdS NPs in a dry composite gel was over 70wt%. In addition, the chemical pathway was proposed for the entire decomposition process.
  1. Trindade T, O'Brien P, Pickett NL, Chem. Mater., 13, 3843 (2001)
  2. Rossetti R, Nakahara S, Brus LE, J. Chem. Phys., 79, 1086 (1983)
  3. Henglein A, Pure Appl. Chem., 56, 1215 (1984)
  4. Herron N, Wang Y, Eckert H, J. Am. Chem. Soc., 112, 1322 (1990)
  5. Spanhel L, Haase M, Weller H, Henglein A, J. Am. Chem. Soc., 109, 5649 (1987)
  6. Chestnoy N, Harris TD, Hull R, Brus LE, J. Phys. Chem., 90, 3393 (1986)
  7. Wang Y, Herron N, J. Phys. Chem., 92, 4988 (1988)
  8. Brus L, J. Phys. Chem., 90, 2555 (1986)
  9. Tenne R, Nabutovsky VM, Lifshitz E, Francis AF, Solid State Commun., 82, 651 (1992)
  10. Ruxandra V, Antohe S, J. Appl. Phys., 84, 727 (1998)
  11. Su B, Choy KL, Thin Solid Films, 102, 361 (2000)
  12. Bai CL, Fang Y, Zhang Y, Chen BB, Langmuir, 20(1), 263 (2004)
  13. Wu DZ, Ge XW, Zhang ZC, Wang MZ, Zhang SL, Langmuir, 20(13), 5192 (2004)
  14. Lemon BI, Crooks RM, J. Am. Chem. Soc., 122(51), 12886 (2000)
  15. Scott RWJ, Datye AK, Crooks RM, J. Am. Chem. Soc., 125(13), 3708 (2003)
  16. Scott RWJ, Wilson OM, Oh SK, Kenik EA, Crooks RM, J. Am. Chem. Soc., 126(47), 15583 (2004)
  17. Youk JH, Park MK, Locklin J, Advincula R, Yang J, Mays J, Langmuir, 18(7), 2455 (2002)
  18. Breulmann M, Colfen H, Hentze HP, Antonietti M, Walsh D, Mann S, Adv. Mater., 10(3), 237 (1998)
  19. Kroll E, Winnik FM, Ziolo RF, Chem. Mater., 8, 1594 (1996)
  20. Xu SQ, Zhang JG, Paquet C, Lin YK, Kumacheva E, Adv. Funct. Mater., 13(6), 468 (2003)
  21. Ha EJ, Park CH, Paik HJ, Lee JO, Compos. Interfaces, in Press (2008)
  22. Materazzi S, Curini R, Appl. Spectrosc. Rev., 36, 169 (2001)
  23. Kamruddin M, Ajikumar PK, Dash S, Tyagi AK, Raj B, Bull. Mater. Sci., 26, 449 (2003)
  24. Dash S, Kamruddin M, Ajikumar PK, Tyagi AK, Raj B, Bera S, Narasimhan SV, J. Nucl. Mater., 278, 173 (2000)
  25. Dash S, Kamruddin M, Ajikumar PK, Tyagi AK, Raj B, Thermochim. Acta, 363(1-2), 129 (2000)
  26. Dash S, Krishnan R, Kamruddin M, Tyagi AK, Raj B, J. Nucl. Mater., 295, 281 (2001)
  27. Dash S, Singh A, Ajikumar PK, Subramanian H, Rajalakshmi M, Tyagi AK, Arora AK, Narasimhan SV, Raj B, J. Nucl. Mater., 303, 156 (2002)
  28. Yu EK, Kim OC, J. Korean Ind. Eng. Chem., 8(1), 8 (1997)
  29. Asquith RS, Gardner KL, Yeung KW, J. Polym. Sci. Part A: Polym. Chem., 16, 3275 (1978)
  30. Tanaka H, Suzuka T, Hada K, Tezuka Y, Polym. J. (Tokyo), 32, 391 (2000)