Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.1, 28-33, February, 2009
카본나노튜브에 담지된 몰리브데늄 카바이드 촉매의 제조 및 전기화학적 산화반응 특성
Fabrication of Carbon Nanotube Supported Molybdenum Carbide Catalyst and Electrochemical Oxidation Properties
E-mail:
초록
카본나노튜브에 담지된 몰리브데늄 카바이드 촉매를 다양한 제조 조건을 통해 제조하여 촉매특성을 분석하였고, 메탄올의 전기화학적 산화반응을 통해 촉매의 활성을 비교하였다. 촉매로써 전이금속의 낮은 활성을 극복하기 위한 방안으로 카본나노튜브를 지지체로 사용하였으며 전구체의 양 및 종류, 지지체의 산처리 방법, 탄화공정 온도조건 등을 변화하여 촉매를 제조하였다. 제조된 촉매는 ICP-AES, XRD, TEM을 통하여 촉매의 특성을 분석하였고, 메탄올의 전기화학적 산화반응을 통해 촉매의 활성을 비교하였다. 몰리브데늄 카바이드 촉매(Mo2C/CNT)의 다양한 제조방법으로 입자크기와 담지량을 변화시킬 수 있었으며, 입자의 크기와 담지량의 변화에 따른 전기화학적 산화반응의 특성을 설명할 수 있었다.
Carbon nanotube supported molybdenum carbide catalysts were prepared as a function of various preparation conditions and characterized, and their catalytic activities were compared through electrochemical oxidation of methanol. To overcome the low activity of a transition metal catalyst, carbon nanotube was used as a support, and the amount and the kind of precursors,
acid treatment method, and carburization temperature were varied for the catalyst preparation. ICP-AES, XRD and TEM were used for the catalyst characterization. Based on the various preparation methods of carbon nanotube supported molybdenum carbide catalysts (Mo2C/CNT), the size and the amount of supported catalysts could be controlled, and their effects on the
electrochemical oxidation could be explained.
Keywords:molybdenum carbide;carbon nanotube;catalyst preparation;electrochemical oxidation;acid treatment
- Choi JH, Park KW, Kwon BK, Sung YE, J. Electrochem. Soc., 150, 973 (2003)
- Sinfelt JH, Yates DJC, Nature Phys. Sci., 229, 27 (1971)
- Choi JG, Brenner JR, Thompson LT, J. Catal., 154(1), 33 (1995)
- Abe H, Bell AT, J. Catal., 142, 430 (1993)
- Djegamariadassou G, Boudart M, Bugli G, Sayag C, Catal. Lett., 31(4), 411 (1995)
- Matsumoto T, Nagashima Y, Yamazaki T, Nakamura J, Electrochem. Solid State Lett., 9(3), A160 (2006)
- Yu R, Chen L, Liu Q, Lin J, Tan KL, Chan HSO, Xu GQ, Hor TSA, Chem. Matter., 10, 718 (1998)
- Heine V, Phys. Rev., 153, 673 (1967)
- Kudo T, Kawamura G, Okamoto H, J. Electrochem. Soc., 130, 1491 (1983)
- Suslick KS, Hyeon TH, Fang M, Cichowlas AA, Mater. Sci. Eng., A204, 186 (1995)
- 박혜림, 성균관대학교 석사학위논문 (2003)
- Bessel CA, Laubernds K, Rodriguez NM, Baker RTK, J. Phys. Chem. B, 105(6), 1115 (2001)
- Boyano A, Galvez ME, Moliner R, Lazaro MJ, J. Lazaro, Fuel, 87, 2058 (2008)
- Li CH, Yao KF, Liang J, Carbon, 41, 858 (2003)
- Suh DJ, Park TJ, Ind. Eng. Chem. Res., 31, 1849 (1992)
- Suh DJ, Park TJ, Ihm SK, J. Catal., 149(2), 486 (1994)
- Amorim C, Keane MA, J. Chem. Technol. Biotechnol., 83, 662 (2008)
- Rodriguez-Ranoso F, Carbon, 36, 159 (1998)