화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.15, No.2, 190-195, March, 2009
Characterization and relative photonic efficiencies of a new Fe-ACF/TiO2 composite photocatalysts designed for organic dye decomposition
E-mail:
The effect of Fe treatment on the Fe-activated carbon fiber (ACF)/TiO2 composite catalysts was studied. Then the characterizations of Fe-ACF/TiO2 composite catalysts were determined by employing BET, SEM, XRD and EDX instruments to analyze the potential factors. The adsorption data showed that the composites had decreased surface compared with the pristine ACF. From the results, it was shown the blocking of the micropores on the surface of ACF by treatment of Fe compound and Ti source. SEM micrographs for the Fe-ACF/TiO2 composite catalysts indicated that practically all the ferric compounds and titanium dioxide introduced were located onto the ACF surfaces and consequently, there were dispersed into very small crystallites with growth of titanium dioxide. The XRD results showed patterns for the anatase and rutile typed titanium dioxide structure with a Fe mediated compound from the composites. The EDX results showed that the presence of C and O with Ti peaks on the Fe-ACF/TiO2 composites decreased with an increase Fe concentration incorporated. Finally, organic dye (MB) decomposition showed the synergetic effects of adsorption, photo-degradation and enhancement of photonic activity of Fe component.
  1. Oh WC, Bae JS, Chen ML, Anal. Sci. Technol., 19, 301 (2006)
  2. Oh WC, Bae JS, Chen ML, Ko YS, Anal. Sci. Technol., 19, 376 (2006)
  3. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
  4. Inagaki M, Imai T, Yoshikawa T, Tryba B, Appl. Catal. B: Environ., 51(4), 247 (2004)
  5. Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y, Fujishima A, Langmuir, 18(21), 7777 (2002)
  6. Al-Salim NI, Bagshaw SA, Bittar A, Kemmitt T, McQuillan AJ, Mills AM, Ryan MJ, J. Mater. Chem., 10, 2358 (2000)
  7. Mills A, Wang J, J. Photochem. Photobiol. A: Chem., 127, 123 (1999)
  8. Hodalgo MC, Colon G, Navio JA, J. Photochem. Photobiol. A: Chem., 148, 341 (2002)
  9. Oh WC, Chen ML, Bull. Kor. Chem. Soc., 29, 159 (2008)
  10. Oh WC, Bae JS, Chen ML, Bull. Kor. Chem. Soc. 27, 1423-1328 (2006)
  11. Oh WC, Bae JS, Chen ML, Anal. Sci. Technol., 19, 460 (2006)
  12. Chen ML, Lim CS, Oh WC, Carbon Lett., 8, 177 (2007)
  13. Oh WC, Jung AR, J. Ceram. Kor. Soc., 45, 150 (2008)
  14. Yuan R, Guan R, Liu P, Zheng J, Colloids Surf. A Physicochem. Eng. Aspects, 293, 80 (2007)
  15. Liu JH, Yang R, Li SM, J. Environ. Sci., 18, 979 (2006)
  16. Yuan R, Guan R, Zheng J, Scripta Mater., 52, 1329 (2005)
  17. Yuan R, Zheng J, Guan R, Zhao Y, Colloids Surf. A: Physicochem. Eng. Aspects, 254, 131 (2005)
  18. Arana J, Diaz OG, Saracho MM, Rodriguez JMD, Melian JAH, Pena JP, Appl. Catal. B: Environ., 32(1-2), 49 (2001)
  19. Yuranova T, Enea O, Mielczarski E, Mielczarski J, Albers P, Kiwi J, Appl. Catal. B: Environ., 49(1), 39 (2004)
  20. Oh WC, Chen ML, J. Ceram. Proc. Res., 8, 316 (2007)
  21. Oh WC, Han SB, Bae JS, Anal. Sci. Technol., 20, 279 (2007)
  22. Ziolkowski L, Vinodgopal K, Kamat PV, Langmuir, 13(12), 3124 (1997)
  23. Moreno-Castilla C, Maldonado-Hodar FJ, Carraso-Marin F, Rodriguez-Castellon E, Langmuir, 18(6), 2295 (2002)
  24. Yu K, Zhao J, Tian Y, Jiang M, Ding X, Liu Y, Zhu Y, Wang Z, Materials Lett., 59, 3563 (2005)
  25. Piera E, Tejedor-Tejedor MI, Zorn ME, Anderson MA, Appl. Catal. B: Environ., 46(4), 671 (2003)
  26. Oh WC, Park TS, J. Environ. Eng. Res., 12, 218 (2007)
  27. Oh WC, Jung AR, Ko WB, J. Ind. Eng. Chem., 13(7), 1208 (2007)
  28. Kaneko M, Okura I, Photocatalysis: Science and Technology, Kodansha & Springer, 1999,, p. 124