화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.2, 183-188, March, 2009
실시간 소각 및 광각 X-선 산란을 이용한 일축 변형된 공단량체 함유 폴리에틸렌의 용융 거동
Melting Behavior of Uni-Axially Deformed Polyethylenes Containing Comonomers as Studied by in-situ Small and Wide Angle X-ray Scattering
E-mail:
초록
일축인장에 의하여 변형된 1-옥텐 공단량체를 함유하는 폴리에틸렌과 고밀도 폴리에틸렌을 대상으로 이들의 온도 상승에 따른 구조 이완 거동을 방사광 가속기를 이용한 실시간 광각 및 소각 X-선 산란법으로 연구하였다. 일축 변형된 폴리에틸렌은 온도가 상승함에 따라 결정의 전이, 부서진 라멜라의 재배열 등 구조적 변화 거동이 수반되었으며 이는 공단량체의 함량에 따라 매우 다르게 나타났다. 공단량체 함량이 2 wt% 이하인 폴리에틸렌의 경우 일축 변형 과정에서 마르텐사이트 전이에 의해 생성된 monoclinic 격자가 온도 상승에 따라 orthorhombic 결정격자로 재전이되고 부서진 라멜라간 재배열 거동을 보였으나 9.5 wt%의 고함량에서는 라멜라의 재배열 거동이 관찰되지 않았으며 결정 격자의 전이 거동도 관찰되지 않았다.
Structural rearrangements of uni-axially deformed polyethylenes containing 1-octene comonomer and HDPE upon heating were investigated by time-resolved small and wide angle X-ray scattering techniques. During heating, structural changes including crystal transformation and lamellar rearrangement noted were very different depending on the comonomer contents. At low comonomer content below 2 wt%, inverse martensitic transformation of crystal lattice from monoclinic to orthorhombic cell and the rearrangement of broken lamellar units into more ordered and perfect lamellar stacks were noted with the temperature increase. At high contents above 9.5 wt%, however, polyethylene copolymers showed neither the crystal transformation nor lamellar rearrangement that can be attributed to low crystallinity and high content of branch units.
  1. Capaccio G, Ward IM, J. Polym. Sci., Polym. Phys. Ed., 22, 475 (1984)
  2. Kennedy MA, Peacock AJ, Failla MD, Lucas JC, Mandelkern L, Macromolecules, 28(5), 1407 (1995)
  3. Goderis B, Reynaers H, Koch MHJ, Macromolecules, 35(15), 5840 (2002)
  4. Lu X, Wang X, Brown N, J. Mater. Sci., 23, 643 (1988)
  5. Zhou ZQ, Brown N, Polymer, 35(17), 3619 (1994)
  6. Lustiger A, Markham RL, Polymer, 24, 1647 (1983)
  7. Bubeck RA, Baker HM, Polymer, 23, 1680 (1982)
  8. Alamo RG, Viers BD, Mandelkern L, Macromolecules, 26, 5740 (1993)
  9. Bowden PB, Young RJ, J. Mater. Sci., 9, 2034 (1974)
  10. Handin JM, Plastic Deformation of Amorphows and Semicrystalline Materials, Escaig B, G' Sell C, Editors, pp 291-311 (1982)
  11. Young RJ, Bowden PB, Ritchie JM, Rider JG, J. Mater. Sci., 8, 23 (1973)
  12. Keller A, Rider JG, J. Mater. Sci., 1, 389 (1966)
  13. Hinton T, Rider JG, J. Appl. Phys., 39, 4932 (1968)
  14. Simpson LA, Hinton T, J. Mater. Sci., 6, 558 (1971)
  15. Shinozabi D, Groves GW, J. Mater. Sci., 8, 1012 (1973)
  16. Point JJ, Homes GA, Gezovich D, Keller A, J. Mater. Sci., 4, 908 (1969)
  17. Pope DP, Keller A, J. Mater. Sci., 9, 920 (1974)
  18. Pope DP, Keller A, J. Polym. Sci., Polym. Phys. Ed., 14, 821 (1976)
  19. Pope DP, Keller A, J. Mater. Sci., 12, 1105 (1977)
  20. Shadrake LG, Guiu F, Phil. Mag., 34, 565 (1976)
  21. Shadrake LG, Guiu F, Phil. Mag., 39, 785 (1979)
  22. Cho TY, Shin EJ, Jeong W, Heck B, Graf R, Strobl G, Spiess HW, Yoon DY, Macromol. Rapid Commun., 27(5), 322 (2006)
  23. Adhikari R, Godehardt R, Lebek W, Michler GH, J. Appl. Polym. Sci., 103(3), 1887 (2007)
  24. Bartczak Z, Lezak E, Polymer, 46(16), 6050 (2005)
  25. Song HH, Ree M, Wu DQ, Chu B, Satkowski M, Stein R, Phillips JC, Macromolecules, 23, 2380 (1990)
  26. Song HH, Wu DQ, Ree M, Stein RS, Phillips JC, LeGrand A, Chu B, Macromolecules, 21, 1180 (1988)
  27. Ree M, Kyu T, Stein RS, J. Polym. Sci., Polym. Phys. Ed., 25, 105 (1987)
  28. Pierce Jr.RH, Tordella JP, Bryant WMD, J. Am. Chem. Soc., 74, 282 (1952)
  29. Natta G, Makromol. Chem., 16, 213 (1955)
  30. Waiter ER, Reding FP, J. Polym. Sci., 21, 557 (1956)
  31. Slichter WR, J. Polym. Sci., 21, 141 (1956)
  32. Teare PW, Holmes DR, J. Polym. Sci., 24, 496 (1957)
  33. Turner-Jones A, J. Polym. Sci., 62, S53 (1962)