화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.2, 191-194, April, 2009
알루미늄 양극산화를 이용한 육각구조로 규칙적으로 배열된 금 나노구조 제조
Fabrication of Hexagonally Assembled Gold Nonodots Based on Anodization of Aluminum
E-mail:
초록
양극산화(anodization)에 의해 얻어지는 다공성 알루미나는 균일한 규칙성의 나노 구조를 지니며, 이를 제어하는 공정이 비교적 쉽고 경제적이어서 최근 연구가 광범위하게 진행되고 있다. 본 연구에서는 1차로 옥살산(oxalic acid)을 이용하여 양극 산화를 한 산화물 만들고, 이 산화물을 선택적으로 제거한 뒤 생기는 알루미늄 표면의 벌집모양의 패턴에 붕산(boric acid)을 이용하여 2차 양극산화를 하여 알루미늄 산화물 나노 돗(nanodot)을 형성하였다. 정렬된 정육면체의 모서리에 20 nm 높이의 나노 돗이 배열되어 있는 구조를 형성하기 위한 최적의 조건을 조사하였다. 알루미늄 산화물 나노 돗 층에 금을 코팅하여 육각벌집모양으로 배열된 금 나노 돗 층을 형성하였다. 이 표면은 향후 바이오센서에 적용될 것으로 기대된다.
Porous alumina prepared by anodization has been widely studied since it shows very regular nanostructures at inexpensive prices. In this article, porous alumina is obtained by anodization of aluminum in the oxalic acid. After the first formed oxide is selectively removed from the aluminum substrate, the hexagonal nanostructures on the fresh aluminum are converted to nanodots by the second anodization in boric acid. Nanodots are arrayed in the convex of the hexagonal nanostructures. The optimization condition for the fabrication of nanodots with a height of 20 nm is investigated in detail. Subsequently, a gold film is deposited on the nanodots, resulting in the formation of gold nanodots arrays which are probably interesting substrate for biosensor applications.
  1. Kim SJ, Lim JH, Choi J, Polym. Sci. Technol., 17(6), 742 (2006)
  2. Masuda H, Fukuda K, Science, 268(5216), 1466 (1995)
  3. Masuda H, Hasegwa F, Ono S, J. Electrochem. Soc., 144(5), L127 (1997)
  4. Jessensky O, Muller F, Gosele U, Appl. Phys. Lett., 72, 1173 (1998)
  5. Li AP, Muller F, Birner A, Nielsch K, Gosele U, J. Appl. Phys., 84, 6023 (1998)
  6. Masuda H, Yada K, Osaka A, Jpn. J. Appl. Phys., 37, L1340 (1998)
  7. Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T, Appl. Phys. Lett., 71, 2770 (1997)
  8. Sun ZJ, Kim HK, Appl. Phys. Lett., 81, 3458 (2002)
  9. Li AP, Muller F, Gosele U, Electrochem. Solid State Lett., 3(3), 131 (2000)
  10. Mikulskas I, Juodkazis S, Tomasiunas R, Dumas JG, Adv. Mater., 13(20), 1574 (2001)
  11. Choi J, Nielsch K, Reiche M, Wehrspohn RB, Gosele U, J. Vac. Sci. Technol., B21, 763 (2003)
  12. Choi J, Park Y, Scherer A, Nanotechnology, 16, 1655 (2005)
  13. Choi J, Kim S, Lee J, Lim J, Lee S, Kim K, Electrochem. Commun, 9, 971 (2007)
  14. Choi J, Kim S, Lee J, Nam S, Kang J, Chang J, Nanotechnology, 18, 215303 (2007)
  15. Shankaran DR, Gobi KV, Miura N, Sens. Actuators B: Chem., 121, 158 (2007)
  16. Rocca M, Surf. Sci. Ref., 22, 1 (1995)
  17. Nikitin PI, Beloglazov AA, Kochergin VE, Valeiko MV, Ksenevich TI, Sens. Actuators B: Chem., 54, 43 (1999)
  18. Wang H, Brandl DW, Nordlander P, Halas NJ, Acc. Chem. Res., 40, 53 (2007)
  19. Li AP, Muller F, Birner A, Nielsch K, Gosele U, J. Appl. Phys., 84, 6023 (1998)
  20. Choi J, Park YB, Scherer A, Nanotechnology, 16, 1655 (2005)
  21. Choi J, Wehrsoph RB, Gosele U, Electrochim. Acta, 50, 2591 (2005)