화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.21, No.1, 27-37, March, 2009
Effect of viscoelasticity on two-dimensional laminar vortex shedding in flow past a rotating cylinder
E-mail:
In this work, we numerically investigate the effect of viscoelasticity on 2D laminar vortex dynamics in flows past a single rotating cylinder for rotational rates 0≤α≤5 (the rotational rate α is defined by the ratio of the circumferential rotating velocity to free stream velocity) at Re =100, in which the vortex shedding has been predicted to occur in literature for Newtonian fluids. The objective of the present research is to develop a promising technique to fully suppress the vortex shedding past a bluff body by rotating a cylinder and controlling fluid elasticity. The predicted vortex dynamics with the present method is consistent with the previous works for Newtonian flows past a rotating cylinder. We also verified our method by comparing our data with the literature in the case of viscoelastic flow past a non-rotating cylinder. For 0≤α≤1.8, the frequency of vortex shedding slightly decreases but the fluctuation of drag and lift coefficient significantly decreases with increasing fluid elasticity. We observe that the vortex shedding of viscoelastic flow disappears at lower α than the Newtonian case. At α= 5, the relationship between the frequency of vortex shedding and Weissenberg number (Wi) is predicted to be non-monotonic and have a minimum around Wi = 0.25. The vortex shedding finally disappears over critical Wi number. The present results suggest that the vortex shedding in the flow around a rotating cylinder can be more effectively suppressed for viscoelastic fluids than Newtonian fluids.
  1. Alves MA, Pinho FT, Oliveira PJ, J. Non-Newton. Fluid Mech., 97(2-3), 207 (2001)
  2. Brooks AN, Hughes TJR, Comput. Mrthods Appl. Mech. Eng., 32, 199 (1982)
  3. Cadot O, Lebey M, Phys. Fluids, 11, 494 (1999)
  4. Cadot O, Kumar S, J. Fluid Mech., 416, 151 (2000)
  5. Caola AE, Joo YL, Armstrong RC, Brown RA, J. Non-Newton. Fluid Mech., 100(1-3), 191 (2001)
  6. Carew EOA, Townsend P, Webster MF, J. Non-Newtonian Fluid Mech., 50, 253 (1993)
  7. Deville MO, Fischer PF, Mund EH, High-order methods for incompressible fluid flow, Cambridge University Press, Cambridge, UK. (2002)
  8. Dimitropoulos CD, Sureshkumar R, Beris AN, J. Non-Newton. Fluid Mech., 79(2-3), 433 (1998)
  9. YURAN F, CROCHET MJ, J. Non-Newton. Fluid Mech., 57(2-3), 283 (1995)
  10. Graham MD, Physics Fluids, 15, 1702 (2003)
  11. Groisman A, Steinberg V, Nature, 405, 53 (2000)
  12. Kang S, Choi H, Lee S, Phys. Fluids, 11, 3312 (1999)
  13. Kang S, Phys. Fluids, 18, 047106 (2006)
  14. Kim JM, Kim C, Ahn KH, Lee SJ, J. Non-Newton. Fluid Mech., 123(2-3), 161 (2004)
  15. Lilek Z, Muzaferija S, Peric M, Seidl V, Numer. Heat Transf. B, 32, 403 (1997)
  16. McKinley GH, Armstrong RC, Brown RA, Phil. Trans. Roy. Soc. Lond. A, 344, 265 (1993)
  17. McKinley GH, Pakdel P, Oztekin A, J. Non-Newton. Fluid Mech., 67(1-3), 19 (1996)
  18. Min T, Yoo JY, Choi H, J. Non-Newton. Fluid Mech., 100(1-3), 27 (2001)
  19. Min T, Yoo JY, Choi H, J. Fluid Mech., 492, 91 (2003)
  20. Nigen S, Walters K, J. Non-Newton. Fluid Mech., 102(2), 343 (2002)
  21. Oliveira PJ, J. Non-Newton. Fluid Mech., 101(1-3), 113 (2001)
  22. Oliveira PJ, Miranda AIP, J. Non-Newton. Fluid Mech., 127(1), 51 (2005)
  23. Papanastasiou TC, Malamataris N, Ellwood K, Int. J. Numer. Methods Fluids, 14, 587 (1992)
  24. Park J, Kwon K, Choi H, KSME Int. J., 12, 1200 (1998)
  25. Park SJ, Lee SJ, J. Non-Newton. Fluid Mech., 87(2-3), 197 (1999)
  26. Rothstein JP, McKinley GH, J. Non-Newton. Fluid Mech., 86(1-2), 61 (1999)
  27. Sahin M, Owens RG, J. Non-Newton. Fluid Mech., 123(2-3), 121 (2004)
  28. SARAMITO P, PIAU JM, J. Non-Newton. Fluid Mech., 52(2), 263 (1994)
  29. Spiegelberg SH, McKinley GH, J. Non-Newton. Fluid Mech., 67(1-3), 49 (1996)
  30. Stojkovic D, Breuer M, Durst F, Phys. Fluids, 14, 3160 (2002)
  31. Stojkovic D, Schon P, Breuer M, Durst F, Phys. Fluids, 15, 1257 (2003)
  32. Sunwoo KB, Park SJ, Lee SJ, Ahn KH, Lee SJ, J. Non-Newton. Fluid Mech., 99(2-3), 125 (2001)
  33. Sureshkumar R, Beris AN, Handler RA, Phys. Fluids, 9, 743 (1997)
  34. Usui H, Shibata T, Sano Y, J. Chem. Eng. Jpn., 13, 77 (1980)
  35. van der Vorst HA, SIAM J. Sci. Stat. Comput., 12, 631 (1992)
  36. Williamson CHK, Annu. Rev. Fluid Mech., 28, 477 (1996)