화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.26, No.3, 895-901, May, 2009
Effect of pyrolysis temperature on the char micro-structure and reactivity of NO reduction
E-mail:
A phenol-formaldehyde resin (PFR) and a bituminous coal (SH) were pyrolyzed at various temperatures. The structure and the char-NO reactivity were analyzed in order to examine the effect of pyrolysis temperature on the micro-structure of the resulting char and further on the reactivity towards NO. Micro-structure of the char samples was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy. It was indicated that the micro-structure of PFR char and coal char experienced remarkable changes during pyrolysis, which resulted in the decrease of phenolic OH, aromatic hydrogen and more ordered structure. The pyrolysis temperature showed a weak impact on the reactivity of PFR char but comparatively remarkable impact on that of coal char at lower reaction temperature. Mineral matter in coal char presented a weak effect on the reactivity.
  1. Xu W, Tong H, Chen C, Xu X, Korean J. Chem. Eng., 25(1), 53 (2008)
  2. Qiu P, Wu S, Sun S, Liu H, Yang L, Wang G, Korean J. Chem. Eng., 24(4), 683 (2007)
  3. Klvana D, Kirchnerova J, Tofan C, Korean J. Chem. Eng., 16(4), 470 (1999)
  4. Aarna I, Suuberg EM, Fuel, 76(6), 475 (1997)
  5. Suuberg EM, Aarna I, Kinetics and mechanism of NOx-char reduction, Final Report DE-FG22-94PC94218 (1998)
  6. Li YH, Lu GQ, Rudolph V, Chem. Eng. Sci., 53(1), 1 (1998)
  7. Tomita A, Fuel Process. Technol., 71(1-3), 53 (2001)
  8. Bak YC, Korean J. Chem. Eng., 15(3), 336 (1998)
  9. Zhao Z, Qiu J, Li W, Chen H, Li B, Fuel, 82, 949 (2003)
  10. Illangomez MJ, Linaressolano A, Radovic LR, Delecea CS, Energy Fuels, 10(1), 158 (1996)
  11. Garijo EG, Jensen AD, Glarborg P, Energy Fuels, 17(6), 1429 (2003)
  12. Takeuchi Y, Yanagisawa K, Tanaka Y, Tsuruoka N, Korean J. Chem. Eng., 14(5), 377 (1997)
  13. Moon SJ, Ihm SK, Korean J. Chem. Eng., 11(2), 111 (1994)
  14. Radovic LR, Walker PL, Jenkins RG, Fuel, 62, 849 (1983)
  15. Senneca O, Russo P, Salatino P, Masi S, Carbon, 35, 141 (1997)
  16. Lu L, Kong C, Sahajwalla V, Harris D, Fuel, 81, 1215 (2002)
  17. Arenillas A, Rubiera F, Pis JJ, Jones JM, Williams A, Fuel, 78(14), 1779 (1999)
  18. Garcia-Garcia A, Illan-Gomez MJ, Linares-Solano A, de Lecea CSM, Fuel Process. Technol., 61(3), 289 (1999)
  19. Yang J, Sanchez-Cortezon E, Pfander N, Wild U, Mestl G, Find J, Schlogl R, Carbon, 38, 2029 (2000)
  20. Painter PC, Coleman MM, Snyder RW, Mahajan O, Komatsu M, Walker PL, Appl. Spec., 35, 106 (1981)
  21. Liu CL, Dong WS, Song JR, Liu L, Mat. Sci. Eng. A, 459, 347 (2007)
  22. Cooke NE, Fuller OM, Gaikwad RP, Fuel, 65, 1254 (1986)
  23. Ibarra J, Moliner R, Bonet AJ, Fuel, 73, 918 (1994)
  24. Chan ML, Jones JM, Pourkashanian M, Williams A, Fuel, 78(13), 1539 (1999)
  25. Ko TH, Kuo WS, Chang YH, Polym. Composite, 21, 745 (2000)
  26. Alexander LE, Sommer EC, J. Phys. Chem., 60, 1646 (1956)
  27. Alvarez AG, Martinez-Escandell M, Molina-Sabio M, Rodriguez-Reinoso F, Carbon, 37, 1627 (1999)
  28. Lu LM, Sahajwalla V, Harris D, Energy Fuels, 14(4), 869 (2000)
  29. Emmerich FG, Carbon, 33, 1709 (1995)
  30. Sheng C, Fuel, 86, 2316 (2007)
  31. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Posschl U, Carbon, 43, 1731 (2005)
  32. Ferrari AC, Robertson J, Phys. Rev. B, 61, 14095 (2000)
  33. Beyssac O, Goffe B, Petitet JP, Froigneux E, Moreau M, Rouzaud JN, Spectrochim. Acta. A, 59, 2267 (2003)
  34. Tuinstra F, Koenig JL, J. Chem. Phys., 53, 1126 (1970)
  35. Thomas KM, Fuel, 76(6), 457 (1997)