Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.3, 290-295, June, 2009
Saccharomyces cerevisiae 에 의한 Agar로부터 바이오 에탄올 생산
Production of Bio-ethanol from Agar using Saccharomyces cerevisiae
E-mail:
초록
해조류 중에서도 홍조류의 agar는 D-galactose와 3,6-anhydro-L-galactose로 구성되어 있기 때문에 이를 분해하면 바이오 에탄올을 생산 할 수 있는 가능성이 높다. 본 연구에서는 열처리와 산 처리를 이용하여 agar를 당화하고 이를 통해 바이오 에탄올을 생산하고자 한다. 바이오 에탄올을 생산하기 위하여 전처리 된 agar에 Saccharomyces cerevisiae KCCM1129를 접종하여 발효하였다. Agar로부터 환원당 생성의 최적조건은 0.1 N HCl이었고, 120 ℃에서 15 min 반응하는 것으로 확인되었다. 발효균주 성장을 위한 최적 염 농도는 0.1 N NaCl로 17.88 g/L까지 성장하였으며, 0.1 N 이상의 농도에서 6.78∼10.76 g/L로 성장이 감소했다. 그리고 agar 16% 농도에서 최적 전처리에 의한 에탄올 생산은 10.16
g/L이었다.
Red-algae agar, consisting of D-galactose and 3, 6-anhydro-L-galactose, is usable for bio-ethanol production if hydrolyzed to monomer unit. The objective of this study is to produce bio-ethanol from agar using the heat and acid-treatment. Bio-ethanol was produced by Saccharomyces cerevisiae KCCM1129 strains using agar-pretreatment. The optimal condition for reducing sugar conversion by agar was found to be 15 min reaction at a HCl concentration of 0.1 N and 120 ℃. The optimum concentration for maximum cell growth was 0.1 N NaCl (17.88 g/L). Over 0.1 N NaCl, the cell growth decreased to 6.78∼10.76 g/L. At 16% agar concentration, the ethanol production obtained by optimum pretreatment was found to be 10.16 g/L.
- Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
- Tolbert NE, Regulation of atmospheric CO2 and O2 by photosynthetic Carbon Metabolism, ed. Preiss J, 8, Oxford University Press, Oxford (1994)
- Hirano A, Ueda R, Hirayama S, Ogushi Y, Energy, 22(2-3), 137 (1997)
- Saha BC, Cotta MA, Enzyme Microb. Technol., 41(4), 528 (2007)
- Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G, Trends Biotechnol., 24, 549 (2006)
- Do JR, Nam YJ, Park JH, Jo JH, J. Kor. Fish. Soc., 30, 428 (1997)
- Kang HI, Ko MS, Kim HJ, Kim SW, Bae TJ, J. Kor. Fish. Soc., 29, 716 (1996)
- Kim JH, Byun DS, Godber JS, Choi JS, Choi WC, Kim HR, Appl. Microbiol. Biotechnol., 63(5), 553 (2004)
- Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W, Appl. Microbiol. Biotechnol., 77, 23 (2007)
- Lee SA, Kim JU, Jung JG, Kim IH, Lee SH, Kim SJ, Lee JH, Kor. J. Biotechnol. Bioeng., 21, 389 (2006)
- Hu B, Gong Q, Wang Y, Ma Y, Li J, Yu W, Anaerobe., 12, 260 (2006)
- Joo DS, Cho SY, Lee EH, Kor. J. Biotechnol. Bioeng., 13, 378 (1998)
- Sugano Y, Terada I, Arita M, Noma M, Matsumoto T, Appl. Environ. Microbiol., 59, 1549 (1993)
- Lii CY, Chen CH, Yeh AI, Lai VMF, Food Hydrocolloids., 13, 477 (1999)
- Joo DS, Kim OS, Cho SY, Lee CH, J. Kor. Fish. Soc., 36, 6 (2003)
- Karlsson A, Singh SK, Carbohydr. Polym., 38, 7 (1999)
- Joo DS, Song HM, Lee JS, Cho SY, Lee EH, Kor. J. Biotechnol. Bioeng., 13, 320 (1998)
- Kong JY, Bae SK, Hwang SH, Ha SD, Kim HT, Kim SK, Kim BJ, Kor. J. Biotechnol. Bioeng., 11, 37 (1996)
- Jang MK, Lee OH, Yoo KH, Lee DG, Lee SH, J. life. Sci., 17, 1601 (2007)
- Kong JY, New Informations of Oligosaccharides, 359, Yelim media, Seoul (2007)
- Chen HM, Zheng L, Yan XJ, Food Technol. Biotechnol., 43, 29 (2005)
- Paik SK, Yun HS, Sa KH, Kim IS, Rhee IK, Park HD, Yu CB, Jin I, Kor. J. Microbiol. Biotechnol., 31, 63 (2003)
- Kim SL, Kim WJ, Lee SY, Byun SM, J. Kor. Agricultural Chemical Society., 27, 139 (1984)
- Horn SJ, Aasen IM, Østgaard K, J. Ind. Microbiol. Biotechnol., 25, 249 (2000)