화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.3, 290-295, June, 2009
Saccharomyces cerevisiae 에 의한 Agar로부터 바이오 에탄올 생산
Production of Bio-ethanol from Agar using Saccharomyces cerevisiae
E-mail:
초록
해조류 중에서도 홍조류의 agar는 D-galactose와 3,6-anhydro-L-galactose로 구성되어 있기 때문에 이를 분해하면 바이오 에탄올을 생산 할 수 있는 가능성이 높다. 본 연구에서는 열처리와 산 처리를 이용하여 agar를 당화하고 이를 통해 바이오 에탄올을 생산하고자 한다. 바이오 에탄올을 생산하기 위하여 전처리 된 agar에 Saccharomyces cerevisiae KCCM1129를 접종하여 발효하였다. Agar로부터 환원당 생성의 최적조건은 0.1 N HCl이었고, 120 ℃에서 15 min 반응하는 것으로 확인되었다. 발효균주 성장을 위한 최적 염 농도는 0.1 N NaCl로 17.88 g/L까지 성장하였으며, 0.1 N 이상의 농도에서 6.78∼10.76 g/L로 성장이 감소했다. 그리고 agar 16% 농도에서 최적 전처리에 의한 에탄올 생산은 10.16 g/L이었다.
Red-algae agar, consisting of D-galactose and 3, 6-anhydro-L-galactose, is usable for bio-ethanol production if hydrolyzed to monomer unit. The objective of this study is to produce bio-ethanol from agar using the heat and acid-treatment. Bio-ethanol was produced by Saccharomyces cerevisiae KCCM1129 strains using agar-pretreatment. The optimal condition for reducing sugar conversion by agar was found to be 15 min reaction at a HCl concentration of 0.1 N and 120 ℃. The optimum concentration for maximum cell growth was 0.1 N NaCl (17.88 g/L). Over 0.1 N NaCl, the cell growth decreased to 6.78∼10.76 g/L. At 16% agar concentration, the ethanol production obtained by optimum pretreatment was found to be 10.16 g/L.
  1. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
  2. Tolbert NE, Regulation of atmospheric CO2 and O2 by photosynthetic Carbon Metabolism, ed. Preiss J, 8, Oxford University Press, Oxford (1994)
  3. Hirano A, Ueda R, Hirayama S, Ogushi Y, Energy, 22(2-3), 137 (1997)
  4. Saha BC, Cotta MA, Enzyme Microb. Technol., 41(4), 528 (2007)
  5. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G, Trends Biotechnol., 24, 549 (2006)
  6. Do JR, Nam YJ, Park JH, Jo JH, J. Kor. Fish. Soc., 30, 428 (1997)
  7. Kang HI, Ko MS, Kim HJ, Kim SW, Bae TJ, J. Kor. Fish. Soc., 29, 716 (1996)
  8. Kim JH, Byun DS, Godber JS, Choi JS, Choi WC, Kim HR, Appl. Microbiol. Biotechnol., 63(5), 553 (2004)
  9. Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W, Appl. Microbiol. Biotechnol., 77, 23 (2007)
  10. Lee SA, Kim JU, Jung JG, Kim IH, Lee SH, Kim SJ, Lee JH, Kor. J. Biotechnol. Bioeng., 21, 389 (2006)
  11. Hu B, Gong Q, Wang Y, Ma Y, Li J, Yu W, Anaerobe., 12, 260 (2006)
  12. Joo DS, Cho SY, Lee EH, Kor. J. Biotechnol. Bioeng., 13, 378 (1998)
  13. Sugano Y, Terada I, Arita M, Noma M, Matsumoto T, Appl. Environ. Microbiol., 59, 1549 (1993)
  14. Lii CY, Chen CH, Yeh AI, Lai VMF, Food Hydrocolloids., 13, 477 (1999)
  15. Joo DS, Kim OS, Cho SY, Lee CH, J. Kor. Fish. Soc., 36, 6 (2003)
  16. Karlsson A, Singh SK, Carbohydr. Polym., 38, 7 (1999)
  17. Joo DS, Song HM, Lee JS, Cho SY, Lee EH, Kor. J. Biotechnol. Bioeng., 13, 320 (1998)
  18. Kong JY, Bae SK, Hwang SH, Ha SD, Kim HT, Kim SK, Kim BJ, Kor. J. Biotechnol. Bioeng., 11, 37 (1996)
  19. Jang MK, Lee OH, Yoo KH, Lee DG, Lee SH, J. life. Sci., 17, 1601 (2007)
  20. Kong JY, New Informations of Oligosaccharides, 359, Yelim media, Seoul (2007)
  21. Chen HM, Zheng L, Yan XJ, Food Technol. Biotechnol., 43, 29 (2005)
  22. Paik SK, Yun HS, Sa KH, Kim IS, Rhee IK, Park HD, Yu CB, Jin I, Kor. J. Microbiol. Biotechnol., 31, 63 (2003)
  23. Kim SL, Kim WJ, Lee SY, Byun SM, J. Kor. Agricultural Chemical Society., 27, 139 (1984)
  24. Horn SJ, Aasen IM, Østgaard K, J. Ind. Microbiol. Biotechnol., 25, 249 (2000)