화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.3, 322-328, June, 2009
고강도 초음파를 이용한 Octamethylcyclotetrasiloxane의 에멀전 중합
Emulsion Polymerization of Octamethylcyclotetrasiloxane under Ultrasonic Irradiation
E-mail:
초록
Octamethylcyclotetrasiloxane (OMCTS)을 에멀젼 상태에서 초음파를 조사하여 polydimethylsiloxane (PDMS)을 중합하였다. 중합에 활용된 초음파 반응기는 주파수가 20 KHz의 horn 유형과 40 KHz의 bath 유형이었으며, horn과 bath를 혼용한 경우의 중합 공정의 특성도 평가해 보았다. 고려된 주요 변수들은 반응 온도와 초음파 조사 시간 이었으며, 중합물에 대하여 각 시료의 고유 점도와 전환율 측정을 통하여 각 중합공정의 효율성과 특성을 조사하고, 최적의 공정 조건을 도출해 보고자 하였다. Horn 유형의 반응기에서는 수 분 이내에 80% 이상의 전환율이 달성되고 높은 점도의 PDMS를 얻을 수 있었으나, 조사 시간에 따라 전환율과 점도는 최대값을 보인 이후에 감소하는 경향을 나타내었다. 초음파의 강도가 상대적으로 약하게 유지되는 bath 유형의 반응기에서는 1 h 이상의 조사가 필요하였으며, horn 유형과 달리 전환율과 점도가 조사 시간에 따라 지속적으로 증가하는 경향이 지배적이었다. Horn유형과 bath유형을 조합한 혼합형 반응기에서는 다른 반응기와는 매우 다른 결과들이 나타났으며, 각 반응기의 특성은 전산 모사를 이용한 반응기 내의 음파 해석을 바탕으로 설명되었다.
Emulsion polymerization of octamethylcyclotetrasiloxane (OMCTS) was conducted under ultrasonic irradiation. Two sources of ultrasound with different intensities and frequencies of 20 KHz and 40 KHz were used for horn and bath type reactor, respectively. A combined process of horn and bath was also investigated. The effectiveness of the reaction systems was investigated by measuring conversion as well as intrinsic viscosity of the products. The influence of reaction temperature and sonication time on the progress of sonochemical polymerization was examined. It was found that conversion of greater than 80% and high viscosity were achieved within a few minutes of sonication in a horn type reactor, however, conversion and viscosity showed maximum values depending upon the sonication time. In a bath type reactor where a relatively weak intensity was maintained, longer duration time of more than one hour of sonication was required to reach a high level of conversion and viscosity. Compared with the horn type system, the conversion and viscosity in the bath type reactor were increased along with the sonication time. When the polymerization was carried out in a combined system of horn and bath, the evolution of conversion and molecular weight was quite different from the other cases. For the given geometry of reaction system, acoustic analysis using a commercial software was carried out and the results were correlated with experimental observation.
  1. Chojnowski J, Cypryk M, Silicon-Containing Polymers, ed. Jones RG, Ando W, Chojnowski J, Kluwer Academic Publishers, Dordrecht, Netherlands (2000)
  2. European Patent 0 850 977 A2 (1997)
  3. Price GJ, Hearn MP, Wallace EN, Patel AM, Polymer, 37(12), 2303 (1996)
  4. Gunzbourg AD, Favier JC, Hemery P, Polymer International, 35, 279 (1994)
  5. Mason TJ, Lorimer JP, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horwood Limited, Chichester, England (1988)
  6. Price GJ, Current Trends in Sonochemistry, The Royal Society of Chemistry, Cambridge (1992)
  7. Suslick KS, Science, 253, 1397 (1991)
  8. Mason TJ, Lorimer JP, Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing, Wiley-VCH, Weinheim (2002)
  9. Kruss P, Lawrie JAG, O’Neill ML, Ultrasonics, 26, 352 (1988)
  10. Sivakumar M, Gedanken A, Zhong Z, Chen L, New J. Chem., 30, 102 (2006)
  11. U. S. Patent 6,627,698 (2003)
  12. Gravier D, Huebner DJ, Saam JG, Rubber Chemistry and Technology, 56, 918 (1983)
  13. Polymer Data Handbook, Oxford University Press (1999)
  14. Chen B, Zhan XL, Yi LM, Chen FQ, Chin. J. Chem. Eng., 15(5), 661 (2007)
  15. Kanwal F, Pethrick RA, Polymer Degradation and Stability, 84, 1 (2004)