화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.15, No.3, 375-380, May, 2009
Selective synthesis of carbon nanotubes and nanocapsules using naphthalene pyrolysis assisted with ferrocene
E-mail:
Selective synthesis of well aligned multi-walled carbon nanotubes (MW-CNT) and multi-shelled carbon nanocapsule (MS-CNC) using pyrolysis of naphthalene with the presence of ferrocene was experimentally examined. With higher mole fraction of naphthalene to ferrocene, more MW-CNTs could be synthesized due to higher concentration of carbonaceous precursors emerging from the decomposed naphthalene. Based on kinetic analysis, at lower temperature, MW-CNTs could preferably be synthesized due to the controlled supply of carbonaceous clusters to get onto the surface of Fe clusters. On the other hand, at temperature higher than 900 8C the Fe clusters become more active to catalyze carbonaceous precursors to undergo self assembling process of MS-CNCs. With cheaper cost of naphthalene compared with other high-value hydrocarbons, usage of naphthalene would provide an advantage of reasonably economical synthesis of MW-CNT or MS-CNC.
  1. Oberlin A, Endo M, J. Cryst. Growth, 32, 335 (1976)
  2. Iijima S, Nature, 354, 56 (1991)
  3. Monthioux M, Kuznetsov VL, Carbon, 44, 1621 (2006)
  4. Bonard JM, Gaai R, Garaj S, Thien-Nga L, Forro L, Takahashi K, Kokai F, Yudaasa M, Iijima S, J. Appl. Phys., 91, 10107 (2002)
  5. Moshkalyov SA, Moreau ALD, Guttierrez HR, Cotta MA, Swart JW, Mater. Sci. Eng. B, 112, 147 (2004)
  6. Kim YH, Lee YS, Lee DW, Rhee GH, J. Ind. Eng. Chem., 13(5), 793 (2007)
  7. Shankar N, Glumac NG, Yu MF, Vanka SP, Diamond Relat. Mater., 17, 79 (2008)
  8. Lange H, Huczko A, Byszewski P, Mizera E, Shinohara H, Chem. Phys. Lett., 289, 174 (1998)
  9. Sano N, Charinpanitkul T, Kanki T, Tanthapanichkoon W, J. Appl. Phys., 96, 645 (2004)
  10. Muthakarn P, Sano N, Charinpanitkul T, Tanthapanichakoon W, Kanki T, J. Phys. Chem. B, 110(37), 18299 (2006)
  11. Charinpanitkul T, Sano N, Mutthakarn P, Tanthapanichakoon W, Mater. Res. Bull., 44, 324 (2009)
  12. Galvez A, Herlin-Boime N, Reynaud C, Clinard C, Rouzaud JN, Carbon, 40, 2775 (2002)
  13. Hou J, Song H, Chen X, Carbon, 42, 3177 (2004)
  14. Huang SM, Dai LM, Mau A, Physica B, 323, 336 (2002)
  15. Zhang WD, Wen Y, Li J, Xu GQ, Gan LM, Thin Solid Films, 422(1-2), 120 (2002)
  16. Sano N, Akazawa H, Kikuchi T, Kanki T, Carbon, 41, 2159 (2003)
  17. Son S, Lee DH, Kim SD, Sung SW, J. Ind. Eng. Chem., 13(2), 257 (2007)
  18. Schnitzler MC, Oliveira MM, Ugarte D, Zarbin AJG, Chem. Phys. Lett., 381(5-6), 541 (2003)
  19. Zhang HR, Liang EJ, Ding P, Chao MJ, Physica B, 337, 10 (2003)
  20. Lee YT, Kim NS, Park JH, Han JB, Choi YS, Ryu H, Lee HJ, Chem. Phys. Lett., 372, 853 (2005)
  21. Schaper AK, Hou HQ, Greiner A, Phillipp F, J. Catal., 222(1), 250 (2004)
  22. Kim HS, Sigmund W, Carbon, 43, 1743 (2005)
  23. Hou HQ, Schaper AK, Weller F, Greiner A, Chem. Mater., 14, 3990 (2002)
  24. Singh C, Shaffer MSP, Windle AH, Carbon, 41, 359 (2003)
  25. Louchev OA, J. Cryst. Growth, 237, 65 (2002)