화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.47, No.3, 349-354, June, 2009
회분식 기포유동층 반응기에서 K-계열 건식흡수제의 주입수분농도 및 재생반응온도에 따른 CO2 흡수-재생 반응특성 연구
Study of CO2 Carbonation-Regeneration Characteristics of Potassium-Based Dry Sorbents According to Water Vapor Contents of Inlet Gas and Regeneration Temperature in the Cycle Experiments of Bubbling Fluidized-Bed Reactor
E-mail:
초록
본 연구에서는 전력연구원으로부터 공급받은 K-계열 건식흡수제를 이용하여 회분식 기포유동층 반응기에서 흡수-재생 반복실험을 통한 H2O 주입농도 및 재생온도에 따른 반응 특성을 살펴보았다. K-계열 건식흡수제는 CO2 흡수를 위한 탄산칼륨과 내마모성과 기계적 강도를 위한 지지체로 구성되어 있다. 흡수반응과 재생반응 특성을 살펴보기 위해 처음 한 시간 동안 흡수반응을 수행하고 다음 한 시간 동안 재생반응을 수행하는 과정을 3차례 반복하여 실험하였다. H2O 농도의 영향을 파악하기 위해서 흡수반응은 70 ℃에서 H2O 농도를 7.3, 12.2, 19.7, 30.8%로 변화하여 실험을 수행하였으며 재생반응은 N2 기체를 유동화기체로 사용하여 150 ℃에서 수행하였다. 재생온도의 영향을 파악하기 위해서는 흡수반응에서의 H2O 농도를 12.2%에 고정한 상태에서 재생온도를 150, 200, 300, 400 ℃로 변화하여 실험을 수행하였다. 수분 함량이 1.97 mol H2O/mol CO2인 경우 흡수반응에서 흡수율이 가장 우수함을 확인하였다. 또한 재생온도가 400 ℃에서 가장 높은 재생율을 보이는 것을 확인하였다. 재생온도가 150 ℃에서 재생율은 대략 60% 정도였으며 실제 두개의 유동층 반응기를 가진 연속장치의 경우 부분적인 재생을 유지하면서 운전이 수행되기 때문에 재생온도는 150 ℃ 이상이면 적절하다고 판단된다. 실제 연속운전에서는 적절한 고체순환량을 결정하는 고체이용율과 재생에너지를 결정하는 재생온도 사이에 절충점이 존재하며 본 실험에서 얻은 데이터가 연속장치의 설계와 운전에 중요한 기초자료가 될 것이다.
In this study, a bubbling fluidized-bed reactor was used to study CO2 capture from flue gas using a potassium-based dry sorbent. A dry sorbent, manufactured by the Korea Electric Power Research Institute, consists of 35% of K2CO3 for CO2 absorption and 65% of supporters for mechanical strength. H2O, a reactant of the carbonation reaction, was supplied in the reactor as a form of saturated water vapor at a given temperature. The experiment of the regeneration reaction was performed by raising up to a given temperature using N2 as a fluidization gas. It was indicated that sorption capacity and regenerability of dry sorbents showed high-efficiency at 1.97 mol H2O/mol CO2 and 400 ℃, respectively. The regenerated sorbent samples were analyzed by TGA to confirm the extent of the reaction. When the regeneration temperature was 150 ℃, the regenerability of dry sorbents was about 60%, which was capable of applying those sorbents to a two-interconnected fluidized-bed reactor system with continuous solid circulation. The results obtained in this study can be used as basic data for designing and operating a large scale CO2 capture process with two fluidized-bed reactors.
  1. Bartoo RK, Chem. Eng. Prog., 80, 35 (1984)
  2. Metz B, Davidson O, de Coninck H, Loos M, Meyer L, IPCC special report on carbon dioxide capture and storage, Cambridge University Press, New York (2005)
  3. Lee SC, Choi BY, Ryu CK, Ahn YS, Lee TJ, Kim JC, Korean J. Chem. Eng., 23(3), 374 (2006)
  4. Yi CK, Hong SW, Jo SH, Son JE, Choi JH, Korean Chem. Eng. Res., 43(2), 294 (2005)
  5. Kunii D, Levenspiel O, Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, U.S.A (1991)
  6. Seo Y, Jo SH, Ryu HJ, Bae DH, Ryu CK, Yi CK, Korean J. Chem. Eng., 24(3), 457 (2007)
  7. Seo Y, Jo SH, Ryu CK, Yi CK, Chemosphere, 69, 712 (2007)
  8. Yi CK, Jo SH, Seo Y, Lee JB, Ryu CK, Int. J. Greenhouse Gas Control, 1, 31 (2007)
  9. Yi CK, Jo SH, Seo Y, Park SD, Moon KH, Yoo JS, Lee JB, Ryu CK, Stud. Surf. Sci. Catal., 159, 501 (2006)
  10. Yi CK, Jo SH, Seo Y, J. Chem. Eng. Japan, 41, 691 (2008)
  11. Park YC, Jo SH, Park KW, Park YS, Yi CK, Korean J. Chem. Eng., 26(3), 874 (2009)
  12. Park YC, Jo SH, Ryu CK, Yi CK, “Long-term Operation of Carbon Dioxide Capture System from a Real Coal-fired Flue Gas Using Dry Regenerable Potassium-based Sorbents”, 9th International Conference on Greenhouse Gas Control Technologies, November, Washington DC (2008)
  13. Kyaw K, Shibata T, Watanabe F, Matsuda H, Hasatani M, Energy Conv. Manag., 38(10-13), 1025 (1997)
  14. Ding Y, Alpay E, Chem. Eng. Sci., 55(17), 3461 (2000)
  15. Yasyerli S, Dogu G, Ar I, Dogu T, Chem. Eng. Commun., 190(5-8), 1055 (2003)
  16. Ramachandran PA, Kulkarni BD, Ind. Eng. Chem. Res. Process Des. Dev., 19, 717 (1980)
  17. Hirano S, Shigomoto N, Yamada S, Hayashi H, Bull. Chem. Soc. Jpn., 68, 1030 (1995)
  18. Liang Y, Harrison DP, Gupta RP, Green DA, McMichael WJ, Energy Fuels, 18(2), 569 (2004)