화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.47, No.3, 380-385, June, 2009
2-Amino-2-Methyl-1-Propanol이 용해한 극성 용매에서 이산화탄소의 흡수
Absorption of Carbon Dioxide into Polar Solvents of 2-Amino-2-Methyl-1-Propanol
E-mail:
초록
평판형 교반기를 사용하여 2-amino-2-methyl-1-propanol(AMP)가 용해된 methanol, ethanol, n-propanol, n-butanol, ethylene glycol, propylene glycol, 및 propylene carbonate와 같은 극성 용매에서 이산화탄소(CO2)의 흡수속도를 측정하였다. CO2의 흡수속도와 carbamate 생성 반응 메커니즘을 사용하여 기-액 불균일반응계의 빠른 반응영역에서 CO2-AMP의 반응속도론을 해석하였으며 용매의 용해도 매개변수와 반응속도상수와의 상관관계를 제시하였다.
The absorption rate of carbon dioxide with 2-amino-2-methyl-1-propanol(AMP) was measured in such non-aqueous solvents as methanol, ethanol, n-propanol, n-butanol, ethylene glycol, propylene glycol, and propylene carbonate, and in water at 298 K and 101.3 kPa using a semi-batch stirred tank with a plane gas-liquid interface. The overall reaction rate constant, obtained under the condition of fast reaction regime, from the measured rate of absorption was used to get the elementary reaction rate constants in complicated reactions represented by reaction mechanism of carbamate formation and the order of overall reaction of CO2 with amine. The correlation between the elementary reaction rate constant and the solubility parameter of the solvent was also presented.
  1. Astarita G, Savage DW, Bisio A, Gas Treating with Chemical Solvents, John Wiley & Sons, New York (1983)
  2. Danckwerts PV, Sharma SS, Chem. Eng., October, 244 (1966)
  3. Danckwerts PV, Chem. Eng. Sci., 34, 443 (1979)
  4. Blanc CC, Demarais G, Inter. Chem. Eng., 24, 43 (1984)
  5. Little RJ, van Swaaij WPM, Versteeg G, AIChE. J., 36, 1633 (1990)
  6. Xu S, Wang YW, Otto FD, Mather AE, Chem. Eng. Sci., 51, 84 (1996)
  7. Saha AK, Biswas AK, Bandyopadhyay SS, Sep. Purif. Technol., 15(2), 101 (1999)
  8. Mandal BP, Guha M, Biswas AK, Bandyopadhyay SS, Chem. Eng. Sci., 56(21-22), 6217 (2001)
  9. Mandala BP, Biswas AK, Bandyopadhyay SS, Chem. Eng. Sci., 58(18), 4137 (2003)
  10. Samanta A, Bandyopadhyay SS, Chem. Eng. Sci., 64, 1185 (2009)
  11. Alvarez-Fuster C, Midoux N, Laurent A, Charpenter JC, Chem. Eng. Sci., 36, 1513 (1981)
  12. Sada E, Kumazawa H, Han ZQ, Matsuyama H, AIChE. J., 31, 1297 (1985)
  13. Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 43, 573 (1988)
  14. Pohorecki R, Mozenski C, Chem. Eng. Process., 37(1), 69 (1998)
  15. Davis RA, Sandall OC, Chem. Eng. Sci., 48, 3187 (1993)
  16. Hua LQ, Shuo Y, Lin TJ, Sep. Purif. Technol., 16(2), 133 (1999)
  17. Ali SH, Merchant SQ, Fahim MA, Sep. Purif. Technol., 18(3), 163 (2000)
  18. Daraiswany LK, Sharma MM, Heterogeneous Reaction: Analysis, Example and Reactor Design, John Wiley & Sons, New York (1984)
  19. Park SW, Lee JW, Choi BS, Lee JW, J. Ind. Eng. Chem., 11(2), 202 (2005)
  20. Park SW, Lee JW, Choi BS, Lee JW, Sep. Sci. Technol., 40(9), 1885 (2005)
  21. Park SW, Choi BS, Lee JW, Korean J. Chem. Eng., 23(1), 138 (2006)
  22. Park SW, Lee JW, Choi BS, Lee JW, Korean J. Chem. Eng., 23(5), 806 (2006)
  23. Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
  24. Shen KP, Li MH, Yih SM, Ind. Eng. Chem. Res., 30, 1811 (1991)
  25. Malcolm LK, Axel M, J. Chem. Eng. Data, 29, 309 (1984)
  26. Danckwerts PV, Gas-Liquid Reactions, McGraw-Hill Book Co., New York (1970)
  27. Weast R, Astle MJ, CRC Handbook of Chemistry and Physics, E56-E59, CRC Press, Inc. Florida (1979)
  28. Brandrup J, Immergut JE, Polymer Handbook, Second Ed., John Wiley & Sons, New York (1975)
  29. Herbrandson HF, Neufeld FR, J. Org. Chem., 31, 1140 (1966)
  30. Morrison RT, Boyd RN, Organic Chemistry, Fourth Ed., Allyn and Bacon, Inc., Toronto (1983)