화학공학소재연구정보센터
Macromolecular Research, Vol.17, No.6, 436-440, June, 2009
Effect of Curing Conditions of a Poly(4-vinylphenol) Gate Dielectric on the Performance of a Pentacene-based Thin Film Transistor
E-mail:
We improved the performance of pentacene-based thin film transistors by changing the curing environment of poly(4-vinylphenol) (PVP) gate dielectrics, while keeping the dielectric constant the same. The field-effect mobility of the pentacene TFTs constructed using the vacuum cured PVP was higher than that of the device based on the Ar flow cured gate dielectric, possibly due to the higher crystalline perfection of the pentacene films. The present results demonstrated that the curing conditions used can markedly affect the surface energy of polymer gate dielectrics, thereby affecting the field-effect mobility of TFTs based on those dielectrics.
  1. Gundlach DJ, Jackson TN, Schlom DG, Nelson SF, Appl. Phys. Lett., 74, 3302 (1999)
  2. Lee HS, Kim DH, Cho JH, Hwang M, Jang Y, Cho K, J. Am. Chem. Soc., 130, 10556 (2008)
  3. Kato Y, Iba S, Teramoto R, Sekitani T, Someya T, Kawaguchi H, Sakurai T, Appl. Phys. Lett., 84, 3789 (2004)
  4. Knipp D, Street RA, Volkel A, Ho J, J. Appl. Phys., 93, 347 (2003)
  5. Dimitrakopoulos CD, Malenfant PRL, Adv. Mater., 14(2), 99 (2002)
  6. Kim DH, Lee HS, Yang H, Yang L, Cho K, Adv. Funct. Mater., 18, 1363 (2008)
  7. Kim DH, Park YD, Jang YS, Yang HC, Kim YH, Han JI, Moon DG, Park SJ, Chang TY, Chang CW, Joo MK, Ryu CY, Cho KW, Adv. Funct. Mater., 15(1), 77 (2005)
  8. Jang Y, Kim DH, Park YD, Cho JH, Hwang M, Cho K, Appl. Phys. Lett., 87, 152105 (2005)
  9. Veres J, Ogier S, Lloyd G, Chem. Mater., 16, 4543 (2004)
  10. Stutzmann N, Friend RH, Sirringhaus H, Science, 299, 1881 (2003)
  11. Facchetti A, Yoon MH, Marks TJ, Adv. Mater., 17(14), 1705 (2005)
  12. Katz HE, Chem. Mater., 16, 4748 (2004)
  13. Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, Shimotani H, Yoshimoto N, Ogawa S, Iwasa Y, Nat. Mater., 3, 317 (2004)
  14. Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W, Weber W, J. Appl. Phys., 92, 5259 (2002)
  15. Yoshida M, Uemura S, Kodzasa T, Kamata T, Matsuzawa M, Kawai T, Synth. Met., 137, 967 (2003)
  16. Jang Y, Cho JH, Kim DH, Park YD, Hwang M, Cho K, Appl. Phys. Lett., 90, 132104 (2007)
  17. Arora N, MOSFET Models for VLSI Circuit Simulation Theory and Practice, Springer-Verlag, New York, 1993, Ch. 4 & 9
  18. Dimitrakopoulos CD, Brown AR, Pomp A, J. Appl. Phys., 80, 2501 (1996)
  19. Nickel B, Barabash R, Ruiz R, Koch N, Kahn A, Feldman LC, Haglund RF, Scoles G, Phys. Rev. B, 70, 125401 (2004)
  20. Kim B, Kim D, Chung J, Kim YJ, Seo I, Kwon SK, Song K, Polym.(Korea), 30(4), 362 (2006)
  21. Ha JY, Yoon SJ, Jeong DY, Cho Y, Macromol. Res., 15(1), 86 (2007)
  22. Lee HS, Kim DH, Cho JH, Park YD, Kim JS, Cho K, Adv. Funct. Mater., 16(14), 1859 (2006)