화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.4, 384-388, July, 2009
폴리아크릴로니트릴/셀룰로오스 아세테이트/N,N-디메틸포름아미드 용액의 유변학적 특성
The Rheological Properties of Poly(acrylonitrile)/Cellulose Acetate Blend Solutions in N,N-Dimethyl Formamide
E-mail:
초록
폴리아크릴로니트릴(PAN)과 셀룰로오스 아세테이트(CA) 블렌드/디메틸포름아미드(DMF) 용액의 유변학적 특성을 온도와 블렌드 조성비에 대하여 조사하였다. 모든 고분자 용액이 온도 변화에 따라 매우 특징적인 유변학적 거동을 보였다. 8 wt% 용액의 경우 20∼60 ℃ 온도범위에서 온도의 증가와 더불어 용액의 점도가 증가하고 손실탄 젠트값이 감소하였다. 20 ℃에서는 용액의 물성이 블렌드의 조성에 영향을 받았으나 40 및 60 ℃에서는 조성비가 용액 물성에 미치는 영향이 크게 감소하였다. 더 높은 온도에서의 더 긴 분자 이완시간으로부터 온도가 증가함에 따라 분자간력에 의한 물리적 구조 형성이 촉진된다는 것을 알 수 있었다. 이러한 유변학적 특성에 대한 원인은 묽은 용액의 특성으로부터 유추할 수 있었다. 고분자 용액의 고유점도가 온도가 증가함에 따라 감소하였다.
The rheological properties of poly(acrylonitrile) (PAN) and cellulose acetate (CA) blend solutions in N,N-dimethyl formamide (DMF) were investigated in terms of temperature and blend composition. The solutions exhibited a very characteristic rheological behavior with variation of temperature. 8 wt% solution showed an increase of viscosity and a decrease of loss tangent as temperature was increased over the temperature range of 20 and 60 ℃. At 20 ℃ the physical properties of the solutions exhibited dependence on the blend composition. At 40 and 60 ℃, however, the effects of blend ratio on the physical properties notably diminished. The longer relaxation time at higher temperature indicated that the formation of physical structures resulting from intermolecular interactions was promoted with increasing temperature. The odd rheological responses were further elucidated by measuring of the physical properties of dilute solutions. The intrinsic viscosity of the solutions suggested that the coiled chain dimension was reduced with increasing temperature.
  1. Shin JH, Kondo T, Polymer, 39(26), 6899 (1998)
  2. Lu X, Weiss RA, Macromolecules, 24, 4381 (1991)
  3. Chae DW, Kim BC, J. Appl. Polym. Sci., 77, 1854 (2006)
  4. Shan D, Wang S, Zhu D, Xue H, Bioelectrochemistry, 71, 198 (2007)
  5. Nicotera I, Oliviero C, Ranieri G, Spadafora A, Castriota M, Cazzanelli E, J. Chem. Phys., 117(15), 7373 (2002)
  6. Kim BK, Oh YS, Lee YM, J. Macromol. Sci. Phys., B33, 243 (1994)
  7. Cates DM, White HJ, J. Polym. Sci., 20, 181 (1956)
  8. Aptel P, Cabasso I, J. Appl. Polym. Sci., 25, 1959 (1980)
  9. Shanbhag A, Barcay B, Koziara J, Shivanand P, Cellulose, 14, 65 (2007)
  10. Wang Q, Chen X, Zhang J, Pei Y, Polym. Adv. Technol., 8, 712 (1997)
  11. Devasia R, Reghunadhan Nair CP, Ninan KN, Polym. Int., 52, 1519 (2003)
  12. Prakash JR, Ottinger HC, J. Non-Newton. Fluid Mech., 71(3), 245 (1997)
  13. Bercea M, Ioan C, Ioan S, Simionescu BC, Simionescu CI, Prog. Polym. Sci., 24, 379 (1999)
  14. Hong PD, Chou CM, He CH, Polymer, 42(14), 6105 (2001)
  15. Oh SJ, Kim BC, J. Polym. Sci. B: Polym. Phys., 39(10), 1027 (2001)
  16. Chae DW, Kim BC, Lee WS, J. Appl. Polym. Sci., 86(1), 216 (2002)
  17. Hong SM, Kim BC, Hwang SS, Kim KU, Polym. Eng. Sci., 33, 630 (1993)
  18. Wissbrun KF, Griffin AC, J. Polym. Sci. Part B: Polym. Phys. Ed., 20, 1835 (1982)
  19. Song SI, Kim BC, Polymer, 45(7), 2381 (2004)
  20. Lyoo WS, Kim BC, Ha WS, Polym. J., 30, 424 (1998)