화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.4, 375-380, August, 2009
아지드화 폴리에피클로로히드린 고무/스티렌-아크릴로니트릴 공중합체 블렌드로부터 에너지함유열가소성탄성체 제조
Energetic Thermoplastic Elastomers from Azidated Polyepichlorohydrin Rubber (Az-PECH)/Styrene Acrylonitrile Copolymer (SAN) Blends
E-mail:
초록
폴리에피클로로히드린 고무(PECH)의 염소기를 높은 분해열을 갖는 아지드기(-N3 )로 치환시켜 아지드화 PECH (Az-PECH)를 제조한 후 이를 열가소성수지인 스티렌-아크릴로니트릴(SAN)과 고무/플라스틱 비율이 무게비로 80/20, 70/30, 60/40이 되도록 블렌딩하고, 제조된 블렌드 필름의 상용성, 기계적물성 및 탄성복원력을 평가하였다. Az-PECH의 N3기 치환도가 50% 이하인 블렌드의 경우 단일 유리전이온도를 나타내어 상용성 블렌드임을 알 수 있었으며, 고무함량이 클수록 블렌드의 우수한 유연성과 탄성복원력을 나타내었다. N3 치환도가 75%인 블렌드에서는 상분리가 일어나며 유연성과 탄성복원력이 상용성 블렌드에 비해 저하되었다. 상용성을 갖는 블렌드들은 모두 고무특성과 함께 반복적인 가열성형이 가능한 전형적인 열가소성탄성체임을 확인하였다 또한 PECH의 N3 치환도가 크고, N3기를 갖는 고 무함량이 큰 블렌드일수록 연소시 더 큰 불꽂을 발생시키는 것을 관찰할 수 있었다.
Polyepichlorohydrin rubber was treated with sodium azide (NaN3) to replace its chlorine by azide (N3). Then, the azidated polyepichlorohydrin rubber (Az-PECH) was blended with thermoplastic styrene-acrylonitrile copolymer with the rubber/plastic ratio of 80/20, 70/30 and 60/40 (wt/wt). The miscibility, mechanical and dynamic mechanical properties as well as elastic recovery properties of the blends were evaluated by DMA (Dynamic Mechanical Analyzer) and tensile tests. When azidation level in azidated PECH was upto 50%, the blends exhibited excellent miscibility, manifested by a single Tg, and fairly good elastic recovery. When azidation level was 75%, the blends showed phase separation. The miscible Az-PECH/SAN blends exhibited typical thermoplastic elastomer like properties, ie. melt processibility and high extensibility as well as good elastic recovery rate. It was also observed from combustion test that higher energy is released with the increase in the azidation level of the Az-PECH in the blends.
  1. Hsieh WH, Peretz A, Huang IT, Kuo KK, J. Propul, 7, 497 (1991)
  2. Miyazaki T, Kubota N, Propellants Explosives Pyrotechnics, 17, 5 (1992)
  3. Talukher MHH, Lindsay GK, J. Polym. Sci., Part A: Polym. Chem., 28, 2393 (1990)
  4. Eroglu MS, Guven O, J. Appl. Polym. Sci., 60(9), 1361 (1996)
  5. Varma IK, Macromol. Symp., 210, 121 (2004)
  6. Eroglu MS, Guven O, Polymer, 39(5), 1173 (1998)
  7. Bui VT, Ahad E, Rheaume D, Raymond MP, J. Appl. Polym. Sci., 62(1), 27 (1996)
  8. Manser GE, Fletcher RW, Energetic Thermoplastic Elastomers, Summary Report, Office of Naval Research Contract N00014-87-C-0098 (1988)
  9. Diaz E, Brousseau P, Ampleman G, Prudhomme RE, Propellants Explosives Pyrotechnics, 28, 101 (2003)
  10. Pisharath S, Ang HG, Polym. Degrad. Stab., 92, 1365 (2007)
  11. Duo YQ, Tan HM, Chen FT, J. Appl. Polym. Sci., 83(14), 2961 (2002)
  12. Walker BM, Rader CP, Handbook of thermoplastic elastomers, 2nd Ed. New York (1998)
  13. De SK, Bhowmick AK, Thermoplastic elastomers from rubber-plastic blends, Ellis Horwood, New York (1990)