Korean Chemical Engineering Research, Vol.47, No.4, 470-475, August, 2009
유화중합을 이용한 수분산성접착제의 중합조건에 관한 연구
Study of Emulsion Polymerization Condition of Aqueous Adhesive
E-mail:
초록
본 연구에서는 유화중합을 이용한 수분산성 아크릴계접착제의 최적의 합성조건을 구하기 위하여 주단량체로 2-EHA (2-ethylhexyl acrylate), n-BA(n-butyl acrylate), MMA(methyl metacrylate), 기능성단량체로 2-HEMA(2-hydroxylethylmethacrylate), AAc(acrylic acid), 유화제로는 음이온성 유화제인 SLS(Sodium Lauryl Sulfate), 그리고 개시제로 APS (Ammonium persulfate)를 사용하여 전환율, 입자 크기, 박리강도, 유리전이온도에 대한 유화제, 개시제, 단량체 함량의 영향을 고찰하였다. 반응온도 82 ℃, 유화제(SLS/monomer) 3.75%, 개시제(APS/monomer) 0.612%에서 95% 이상의 전환율을 얻을 수 있었고, 유화제나 개시제의 양이 너무 많을 때는 박리접착강도가 감소하는 경향을 보였으며, 65% 2-EHA/monomer, 20% BA/monomer, 10% MMA/monomer에서 최대 전환율과 최대 박리접착강도를 얻을 수 있었다.
To study the optimal synthesis conditions of aqueous acrylic adhesive using emulsion polymerization, the effects of monomer, surfactant and initiator on the adhesive properties, such as conversion rate, particle size, peel strength, and glass transition temperature, were investigated. 2-EHA, n-BA and MMA were used as main monomers, 2-HEMA and AAc as functional monomers, SLS as surfactant and APS as initiator, respectively. The conversion rate
was over 95% at 3.75% surfactant(SLS/monomer), 0.612% initiator(APS/monomer) and 82 ℃ reaction temperature. When the excess amount of surfactant or initiator was used, the peel strength represented decreasing tendency. The maximum conversion rate and peel strength were obtained at 65% 2-EHA/monomer, 20% BA/monomer, and 10% MMA/monomer.
Keywords:Emulsion Polymerization;Aqueous Adhesive;Peel Strength;Glass Transition Temperature;Main Monomer;Functional Monomer;Surfactant;Initiator
- Gilber RG, Emulsion Polymerization, Academic press, 14-15 (1995)
- German DR, Acrylic adhesives, in Handbook of Adhesives, Skeist I (ed.), Van Nostrand Reinhold, New York, Ch. 25 (1990)
- Satas D, Acrylic adhesives, in Handbook of Pressure Sensitive Adhesive Technology, Satas D (ed), Van Nostrand Reinhold, New York, Ch. 15 (1989)
- Kinloch AL, Adhesion and Adhesives : Science and Technology, Chapman and Hall, New York (1987)
- Kendall K, Padget JC, Int. J. Adhes. Adhes., 2, 149 (1982)
- Henry F, Cansell F, Guillaume JL, Pichot C, Colloid. Polym. Sci., 267, 167 (1989)
- Trejo-O’Reilly JA, Flore R, Mater L, Mater. Lett., 15, 248 (1992)
- Eckersley ST, Prog. Org. Coat., 23, 387 (1994)
- Foster AB, Lovell PA, Rabojohns MA, Polymer, 50, 1654 (2009)
- Thickett SC, Gilbert RG, Polymer, 48, 6965 (2007)
- Chern CS, Prog. Polym. Sci., 31, 443 (2006)
- Seo IS, Lee MC, J. Korean Ind. Eng. Chem., 18(5), 444 (2007)
- Tobing SD, Klein A, J. Appl. Polym. Sci., 79(12), 2230 (2001)
- Garrett J, Lovell PA, Shea AJ, Viney DR, Macromol. Symp., 151, 487 (2000)
- Laureau C, Vicente M, Barandiaran MJ, Leiza JR, Asua JM, J. Appl. Polym. Sci., 81(5), 1258 (2001)
- Kim O, Choi H, J. Korean Ind. Eng. Chem., 14(3), 307 (2003)
- Choi MJ, Kim DH, Kim GN, J. Adhesion and Interface, 9, 9 (2008)