Macromolecular Research, Vol.17, No.8, 575-579, August, 2009
Copolymerization of L-Lactide and ε-Caprolactone in Supercritical Fluid
E-mail:
Copolymerization of L-lactide and ε-caprolactone initiated by tin (II) octoate (Sn(Oct)2) was carried out in supercritical chlorodifluoromethane (R22) with varying reaction conditions (time and temperature) and amounts of monomer and catalyst, under a pressure of 250 bar. The optimum conditions were a reaction time of 10 h and a temperature of 130 ℃, which is similar to the temperature used in bulk copolymerization system. The conversion increased from 56% to 76% by increasing the reaction time from 1 to 10 h. The molecular weight also increased to 75,900 g.mol-1 over the same period, while the increased monomer concentration resulted in a high
molecular weight of 86,400 g.mol^(-1) and a monomer conversion of 84%. Raising the reaction temperature from 90 to 130 ℃ increased the monomer conversion as well as the poly-L-lactide-co-ε-caprolactone (PLCL) molecular weight. The variation on the stannous octoate catalyst suggested that less catalyst would decrease the caprolactone content of the polymer.
- Jeong B, Choi YK, Bae YH, Zentner G, Kim SW, J. Control. Release, 62, 109 (1999)
- Jeong SI, Lee YM, Lee J, Shin YM, Shin H, Lim YM, Nho YC, Macromol. Res., 16(2), 139 (2008)
- Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim BS, Lee YM, J. Biomater. Sci., Polym. Ed., 5, 645 (2004)
- Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SY, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ, Biomaterials, 26, 1405 (2005)
- Xie J, Ihara M, Jung Y, Kwon IK, Kim SH, Kim YH, Matsuda T, Tissue Eng., 12, 449 (2006)
- Grijpma DW, Vanhofslot RD, Super H, Nijenhuis AJ, Pennings AJ, Polym. Eng. Sci., 34(22), 1674 (1994)
- Corbin PS, Webb MP, McAlvin JE, Fraser CL, Biomacromolecules, 2(1), 223 (2001)
- Min Y, Lee S, Park JK, Cho KY, Sung SJ, Macromol. Res., 16(3), 231 (2008)
- Hiljanen-Vainio MP, Orava PA, Seppala JVJ, Biomed. Mater. Res. Part A, 34, 39 (1997)
- Basko M, Kubisa P, J. Polym. Sci. A: Polym. Chem., 44(24), 7071 (2006)
- Kim JK, Park DJ, Lee MS, Ihn KJ, Polymer, 42(17), 7429 (2001)
- Haitao Q, Jianzhong B, Shenguo W, Polym. Degrad. Stabil., 68, 423 (2000)
- Jeon O, Lee SH, Kim SH, Lee YM, Kim YH, Macromolecules, 36(15), 5585 (2003)
- Lee JM, Lee BC, Hwang SJ, J. Chem. Eng. Data, 45, 1162 (2000)
- Pack JW, Kim SH, Park SY, Lee YW, Kim YH, Macromolecules, 37(10), 3564 (2004)
- Wang C, Li H, Zhao X, Biomaterials, 25, 5797 (2007)
- Sun JQ, Shi WL, Chen DY, Liang CF, J. Appl. Polym. Sci., 86(13), 3312 (2002)
- Dubois P, Jacobs C, Jerome R, Teyssie P, Macromolecules, 24, 2266 (1991)
- Vivas M, Mejias N, Contreras J, Polym. Int., 52, 1005 (2003)
- Pack JW, Kim SH, Park SY, Lee YW, Macromol. Biosci., 4, 340 (2004)
- Pack JW, Kim SH, Cho IW, Park SY, Kim YH, J. Polym. Sci. A: Polym. Chem., 40(4), 544 (2002)
- Shen YQ, Zhu KJ, Shen ZQ, Yao KM, J. Polym. Sci. A: Polym. Chem., 34(9), 1799 (1996)
- Leenslag JW, Pennings AJ, Makromol. Chem., 188, 189 (1987)
- Kricheldorf HR, Kreiser-Saunders I, Stricker A, Macromolecules, 33(3), 702 (2000)
- Zhang XC, Macdonald DA, Goosen MF, Mcauley KB, J. Polym. Sci. A: Polym. Chem., 32(15), 2965 (1994)
- Storey RF, Taylor AE, J. Macromol. Sci. Pure Appl. Chem., 35, 723 (1998)
- Kowalski A, Duda A, Penczek S, Macromol. Rapid Commun., 19(11), 567 (1998)
- Kowalski A, Duda A, Penczek S, Macromolecules, 33(3), 689 (2000)
- Storey RF, Sherman JW, Macromolecules, 35(5), 1504 (2002)
- Ropson N, Dubois P, Jerome R, Teyssie P, Macromolecules, 28(23), 7589 (1995)
- Srisa-ard M, Molloy R, Molloy N, Siripitayananon J, Sriyai M, Polym. Int., 50, 891 (2001)
- Hiljanen-Vainio MP, Orava PA, Seppala JVJ, Biomed. Mater. Res. Part A, 34, 39 (1997)
- Contreras J, Davila D, Polym. Int., 55, 1049 (2006)