화학공학소재연구정보센터
Macromolecular Research, Vol.17, No.8, 575-579, August, 2009
Copolymerization of L-Lactide and ε-Caprolactone in Supercritical Fluid
E-mail:
Copolymerization of L-lactide and ε-caprolactone initiated by tin (II) octoate (Sn(Oct)2) was carried out in supercritical chlorodifluoromethane (R22) with varying reaction conditions (time and temperature) and amounts of monomer and catalyst, under a pressure of 250 bar. The optimum conditions were a reaction time of 10 h and a temperature of 130 ℃, which is similar to the temperature used in bulk copolymerization system. The conversion increased from 56% to 76% by increasing the reaction time from 1 to 10 h. The molecular weight also increased to 75,900 g.mol-1 over the same period, while the increased monomer concentration resulted in a high molecular weight of 86,400 g.mol^(-1) and a monomer conversion of 84%. Raising the reaction temperature from 90 to 130 ℃ increased the monomer conversion as well as the poly-L-lactide-co-ε-caprolactone (PLCL) molecular weight. The variation on the stannous octoate catalyst suggested that less catalyst would decrease the caprolactone content of the polymer.
  1. Jeong B, Choi YK, Bae YH, Zentner G, Kim SW, J. Control. Release, 62, 109 (1999)
  2. Jeong SI, Lee YM, Lee J, Shin YM, Shin H, Lim YM, Nho YC, Macromol. Res., 16(2), 139 (2008)
  3. Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim BS, Lee YM, J. Biomater. Sci., Polym. Ed., 5, 645 (2004)
  4. Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SY, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ, Biomaterials, 26, 1405 (2005)
  5. Xie J, Ihara M, Jung Y, Kwon IK, Kim SH, Kim YH, Matsuda T, Tissue Eng., 12, 449 (2006)
  6. Grijpma DW, Vanhofslot RD, Super H, Nijenhuis AJ, Pennings AJ, Polym. Eng. Sci., 34(22), 1674 (1994)
  7. Corbin PS, Webb MP, McAlvin JE, Fraser CL, Biomacromolecules, 2(1), 223 (2001)
  8. Min Y, Lee S, Park JK, Cho KY, Sung SJ, Macromol. Res., 16(3), 231 (2008)
  9. Hiljanen-Vainio MP, Orava PA, Seppala JVJ, Biomed. Mater. Res. Part A, 34, 39 (1997)
  10. Basko M, Kubisa P, J. Polym. Sci. A: Polym. Chem., 44(24), 7071 (2006)
  11. Kim JK, Park DJ, Lee MS, Ihn KJ, Polymer, 42(17), 7429 (2001)
  12. Haitao Q, Jianzhong B, Shenguo W, Polym. Degrad. Stabil., 68, 423 (2000)
  13. Jeon O, Lee SH, Kim SH, Lee YM, Kim YH, Macromolecules, 36(15), 5585 (2003)
  14. Lee JM, Lee BC, Hwang SJ, J. Chem. Eng. Data, 45, 1162 (2000)
  15. Pack JW, Kim SH, Park SY, Lee YW, Kim YH, Macromolecules, 37(10), 3564 (2004)
  16. Wang C, Li H, Zhao X, Biomaterials, 25, 5797 (2007)
  17. Sun JQ, Shi WL, Chen DY, Liang CF, J. Appl. Polym. Sci., 86(13), 3312 (2002)
  18. Dubois P, Jacobs C, Jerome R, Teyssie P, Macromolecules, 24, 2266 (1991)
  19. Vivas M, Mejias N, Contreras J, Polym. Int., 52, 1005 (2003)
  20. Pack JW, Kim SH, Park SY, Lee YW, Macromol. Biosci., 4, 340 (2004)
  21. Pack JW, Kim SH, Cho IW, Park SY, Kim YH, J. Polym. Sci. A: Polym. Chem., 40(4), 544 (2002)
  22. Shen YQ, Zhu KJ, Shen ZQ, Yao KM, J. Polym. Sci. A: Polym. Chem., 34(9), 1799 (1996)
  23. Leenslag JW, Pennings AJ, Makromol. Chem., 188, 189 (1987)
  24. Kricheldorf HR, Kreiser-Saunders I, Stricker A, Macromolecules, 33(3), 702 (2000)
  25. Zhang XC, Macdonald DA, Goosen MF, Mcauley KB, J. Polym. Sci. A: Polym. Chem., 32(15), 2965 (1994)
  26. Storey RF, Taylor AE, J. Macromol. Sci. Pure Appl. Chem., 35, 723 (1998)
  27. Kowalski A, Duda A, Penczek S, Macromol. Rapid Commun., 19(11), 567 (1998)
  28. Kowalski A, Duda A, Penczek S, Macromolecules, 33(3), 689 (2000)
  29. Storey RF, Sherman JW, Macromolecules, 35(5), 1504 (2002)
  30. Ropson N, Dubois P, Jerome R, Teyssie P, Macromolecules, 28(23), 7589 (1995)
  31. Srisa-ard M, Molloy R, Molloy N, Siripitayananon J, Sriyai M, Polym. Int., 50, 891 (2001)
  32. Hiljanen-Vainio MP, Orava PA, Seppala JVJ, Biomed. Mater. Res. Part A, 34, 39 (1997)
  33. Contreras J, Davila D, Polym. Int., 55, 1049 (2006)