화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.4, 622-632, July, 1996
반응성 상용화제를 이용한 Poly(ethylene terephthalate)/Polyethylene 블렌드의 상용성 증진
Compatibility Enhancement of Poly(ethylene terephthalate)/Polyethylene Blends Using a Reactive Compatibilizer
초록
상용성이 없는 poly(ethylene terephthalate) (PET)와 polyethylene(PE)로 이루어진 블렌드의 상용성 증진을 통해 강인화된 PET/PE 블렌드의 제조와 그에 관련된 인자들에 관하여 연구하였다. 반응성 상용화제로는 poly(ethylene-co-acrylic esterate-co-glycidyl methacrylate) (EAG)를 사용하였는데, 이 물질은 주성분인 에틸렌 부분이 PE와 상용성이 있고 glycidyl methacrylate(GMA)내에 포함된 반응성 관능기인 에폭시기가 PET의 -COOH와 반응을 하여 상용성을 증진시킨다는 것이 밝혀졌다. 반응성 상용화제가 첨가되면 계면 장력이 감소하고 그에 따라 분산상의 크기가 줄어드는 것을 주사전자현미경 (SEM)으로 확인하였고, 기계적 물성 측정 결과 계면 접착력이 향상됐음이 확인되었다. EAG의 양이 증가함에 따라 충격강도 및 반응율이 증가하다가 일정 조성(70/6/24 PET/PE/EAG)에서 최대치를 보였다. 이는 이 조성에서 첨가된 EAG가 분산상의 크기를 최대의 충격강도를 가질 만큼의 크기로 줄여주는데 기인한다고 생각된다.
The compatibility enhancement of poly(ethylene terephthalate) (PET)/ polyethylene (PE) blends by incorporating a reactive compatibilizer and the factors related to toughening of the PET/PE blends were investigated. For this purpose, poly(ethylene-co-acrylic esterate-co-glycidyl methacrylate) (EAG) was employed as a reactive compatibilizer. This material is expected to enhance the compatibility because ethylene, the largest combonent in EAG, is miscible with PE and epoxy group in glycidyl methacrylate (GMA) reacts with the carboxylic acid in PET. As a result of compatibilizer addition, the reduction in interfacial tension and consequent decrease in the size of dispersed phase was ascertained by the scanning electron microscopic observation. The mechanical properties of blends were also measured and the results indicated that the interfacial adhesion was improved with EAG addition. With increasing the amount of EAG, the mechanical properties and the fraction of reacted molecules were increased. The maximum values of mechanical properties were obtained at 70/6/24 PET/PE/EAG composition.
  1. 임승순, 제 13회 고분자하계대학, 한국고분자학회 (1991)
  2. 김광옹, 제 1회 고분자 산·학·연 심포지움, 한국고분자학회 (1993)
  3. 장성기, 제 1회 고분자 산·학·연 심포지움, 한국고분자학회 (1993)
  4. Traugott TD, Barlow JW, Paul DR, J. Appl. Polym. Sci., 28, 2947 (1983) 
  5. Chen IM, Shiah CM, Plast. Eng., Oct., 33 (1989)
  6. Jabarin SA, Lotgren EA, Shah SB, "Emerging Technologies in Plastics Recycling," G.D. Andrews and P.M. Subramanian, Eds., ACS, chap. 17, Washington D.C. (1992)
  7. Bonner JG, Hope PS, "Polymer Blends and Alloys," M.J. Folks and P.S. Hope, Eds., Chap. 3, Chapman and Hall, New York (1993)
  8. Xanthos M, Dagli SS, Polym. Eng. Sci., 31, 929 (1991) 
  9. Curry J, Kiani A, ANTEC, 1452 (1990)
  10. Hert M, Jannel JC, Robert P, Polym. Proc. Soc., 6, 10 (1990)
  11. Stewart ME, George SE, Miller RL, Polym. Eng. Sci., 33, 675 (1993) 
  12. Lee PC, Kuo WF, Chang FC, Polymer, 35(26), 5641 (1994) 
  13. Akkapeddi MK, Vanbuskirk B, Polym. Mater. Sci. Eng., 67, 317 (1992)
  14. Yamamoto T, "Compatibilizer for Polymers," S. Akiyama, Ed., Chap. 7, CMC, Tokyo (1992)
  15. Maa TC, Chang FC, J. Appl. Polym. Sci., 49, 913 (1993) 
  16. Chang DY, Chang FC, Polym. Networks Blends, 4, 157 (1994)
  17. Akkapeddi MK, VanBuskirk B, Mason CD, Polym. Prepr., 34, 848 (1993)
  18. Koenig JL, "Spectroscopy of Polymers," p. 90, ACS, Washington D.C. (1992)