화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.5, 485-489, September, 2009
수용액 내 폴리스티렌-폴리에틸옥사이드 이중블록공중합체 미셀 구조에 대한 소각중성자산란 연구
Small-Angle Neutron Scattering Study of the Structure of Micelles Formed by a Polystyrene-Poly(ethylene oxide) Diblock Copolymer in Aqueous Solution
E-mail:
초록
중수소화 폴리스티렌-폴리에틸렌옥사이드 이중블록공중합체(dPS-PEO)로 형성된 미셀의 구조에 대한 온도 의존성을 소각중성자산란(SANS)을 이용하여 조사하였다. SANS 데이터는 코어-쉘 모델의 form factor와 hardsphere structure factor를 결합하여 분석하였으며, 산란 곡선 맞춤을 이용하여 미셀 응집수와 코로나 반경을 구하였다. 온도가 25 ℃에서 45 ℃로 증가함에 따라서 미셀 응집수는 229에서 240으로 변화하였으며, 이로 인해 코어 반경이 증가하였다. 그러나, 미셀의 쉘 두께는 6.2 nm에서 5.8 nm로 감소하였다. 이러한 구조적 변화는 온도 증가에 따라서 PEO 블록의 소수성이 증가함으로써 코로나 내의 친수성 그룹 당 수화 부피가 감소하였기 때문이다.
The temperature dependence of the structure of micelles formed by a deuterated polystyrene- poly(ethylene oxide) diblock copolymer (dPS-PEO) in heavy water were investigated with small-angle neutron scattering (SANS). SANS data were analyzed using the hard-sphere structure factor in combination with the form factor of a core-shell model. The micelle aggregation number and corona radius were obtained from the fits to the SANS data. The micelle aggregation numbers varied with temperature from 229 at 25 ℃ to 240 at 45 ℃, with a corresponding increase in the core radius. However, the shell thickness of micelles decreased with increasing temperature from 6.2 to 5.8 nm. These structural changes of micelles might be ascribed to the decrease in the hydration volume per hydrophilic group in the corona because of the increase in hydrophobicity of the PEO block with increasing temperature.
  1. Hamley IW, The Physics of Block Copolymers, Oxford University Press, Oxford (1998)
  2. Pedersen JS, Gerstenberg MC, Macromolecules, 29(4), 1363 (1996)
  3. Mortensen K, Brown W, Almdal K, Alami E, Jada A, Langmuir, 13(14), 3635 (1997)
  4. Goldmints I, Vongottberg FK, Smith KA, Hatton TA, Langmuir, 13(14), 3659 (1997)
  5. Brown GJ, Richards RW, Heenan RK, Polymer, 42(18), 7663 (2001)
  6. Pedersen JS, Svaneborg C, Almdal K, Hamley IW, Young RN, Macromolecules, 36(2), 416 (2003)
  7. Castelletto V, Hamley IW, Langmuir, 20(7), 2992 (2004)
  8. Yoon YS, Kim SC, Polym.(Korea), 23(6), 916 (1999)
  9. Yoon YS, Kim SC, Polym.(Korea), 23(6), 926 (1999)
  10. Hurtrez G, Dumas P, Riess G, Polym. Bull., 40(2-3), 203 (1998)
  11. Zhang LF, Barlow RJ, Eisenberg A, Macromolecules, 28(18), 6055 (1995)
  12. Tuzar Z, Kratochvil P, Prochazka K, Munk P, Collect. Czech. Chem. Commun., 58, 2362 (1993)
  13. Xu R, Winnik MA, Hallett FR, Riess G, Croucher MD, Macromolecules, 24, 87 (1991)
  14. Wilhelm M, Zhao CL, Wang Y, Xu R, Winnik MA, Mura JL, Riess G, Croucher MD, Macromolecules, 24, 1033 (1991)
  15. Hickl P, Ballauff M, Jada A, Macromolecules, 29(11), 4006 (1996)
  16. Poppe A, Willner L, Allgaier J, Stellbrink J, Richter D, Macromolecules, 30(24), 7462 (1997)
  17. Chen SH, Annu. Rev. Phys. Chem., 37, 351 (1986)
  18. Mortensen K, Pedersen JS, Macromolecules, 26, 805 (1993)
  19. Jule E, Yamamoto Y, Thouvenin M, Nagasaki Y, Kataoka K, J. Control. Release, 97, 407 (2004)
  20. Na K, Lee DH, Hwang DJ, Park HS, Lee KH, Bae YH, Eur. Polym. J., 42, 2581 (2006)