화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.5, 496-500, September, 2009
광경화성 단분자를 이용한 광학 보상 휨 액정 디스플레이의 전기광학 특성연구
Study on Electro-optic Characteristics of the Optically Compensated Bend Liquid Crystal Display Using UV Curable Monomer
E-mail:
초록
광학 보상 휨 액정디스플레이(OCB-LCD)는 빠른 응답속도와 광 시야각 특성 때문에 응용 분야가 많다. 하지만 OCB-LCD는 초기에 splay 상태로 배열되어 있고 계조 구동은 bend 상태에서 이루어지기 때문에 초기 splay 상태에서 bend 상태로의 빠른 전이가 필요하다. 기존에 순간적으로 고전압을 인가하는 방식과 달리 본 연구에서는 임계전압과 광경화성 반응성 단량체의 고분자화를 통한 표면 선경사각 형성으로 초기 상태부터 bend 상태를 갖는 OCBLCD를 제조하였다. 제조된 액정 셀의 전기 광학적 및 전기적 특성을 분석한 결과 본 연구에서 제조된 셀은 기존 OCB셀에 비해 고 선경사각으로 인한 고속응답 특성을 보여주었고 액정 단량체에 의해 형성된 배향막 위의 고분자 층 형성에 따른 잔류 DC 값은 0.1 V 보다 적었다.
Optically compensated bend liquid crystal display (OCB-LCD) has many application fields owing to its fast response time and wide viewing angle. However, in order to operate the OCB-LCD in bend state, this device needs quick transitions from the initial splay state to bend state. Unlike conventional approach using transient high voltage for the transition, the OCB-LCD with high surface tilt angle, which was achieved by polymerization of UV curable reactive mesogen monomer under certain voltage, was manufactured and the cell showed bend state initially. Electro-optic and electrical characteristics of the cell were analyzed. The cell shows a fast response time owing to high surface pretilt angle and very low residual DC less than 0.1 V although another polymer layer is formed above polymer alignment layers.
  1. Choi CH, Kim SH, Kim BK, Polym.(Korea), 18(6), 1035 (1994)
  2. Kim MS, Won HK, Song SH, Lee MH, Lee SH, Polym.(Korea), 28(4), 298 (2004)
  3. Schadt M, Helfrich W, Appl. Phys. Lett., 18, 127 (1971)
  4. Hwang SH, Lim YJ, Lee MH, Lee SH, Lee GD, Kang H, Kim KJ, Choi HC, Curr. Appl. Phys., 11, 690 (2007)
  5. Oh-e M, Ohta M, Aratani S, Kondo K, Proc. of the 15th International Display Research Center, 577 (1995)
  6. Klausmann HHH, Aratani S, Kondo K, J. Appl. Phys., 83, 1854 (1998)
  7. Oh EY, Baik SH, Sohn MH, Kim KD, Hong HJ, Bang JY, Kwon KJ, Kim MH, Jang H, Yoon JK, Chung IJ, J. SID, 13, 215 (2005)
  8. Takeda A, Kataoka S, Sasaki T, Chida H, Tsuda H, Ohmuro K, Koike Y, Sasabayashi T, Okamoto K, Society for Information Display Int. Symp., 1077 (1998)
  9. Ong HL, Cheong N, Lo J, Metras M, Woodard O, Society for Information Display Int. Symp., 680 (2003)
  10. Hanaoka K, Nakanishi Y, Inoue Y, Tanuma S, Koike Y, Society for Information Display Int. Symp., 1200 (2004)
  11. Lee SH, Lee SL, Kim HY, Appl. Phys. Lett., 73, 2881 (1998)
  12. Noh JD, Kim HY, Kim JH, Nam SH, Lee SH, Jpn. J. Appl. Phys., 42, 1290 (2003)
  13. Kim MS, Jung YH, Seen SM, Kim HY, Kim SY, Lim YJ, Lee SH, Jpn. J. Appl. Phys., 44, 3121 (2005)
  14. Bos PJ, Johnson PA, Koehler- Beran KR, Society for Information Display Int. Symp., 30 (1983)
  15. Jung MJ, Jhun CG, Kim JC, Yoon TH, Hoh JD, Suh DH, Lee JY, Proc. of the 11th International Display Workshops, 121 (2004)
  16. Chang TJ, Chen PL, Proc. of the 10th International Display Workshops, 77 (2003)
  17. Kuo CL, Miyashita T, Suzuki M, Uchida T, Appl. Phys. Lett., 68, 1461 (1996)
  18. Kang SW, Sprunt S, Chien LC, Macromolecules, 35(25), 9372 (2002)
  19. Hasegawa R, Kidzu Y, Amemiya I, Uchikoga S, Wakemoto H, Society for Information Display Int. Symp., 995 (2007)
  20. Chen TJ, Chen CC, Wu JJ, Sun CH, Jpn. J. Appl. Phys., 46, 4203 (2007)
  21. Kim SG, Kim SM, Kim YS, Lee HK, Lee SH, Lee GD, Lyu JJ, Kim KH, Appl. Phys. Lett., 90, 261910 (2007)
  22. Chen TJ, Chu KL, Appl. Phys. Lett., 92, 091102 (2008)
  23. Jeon EJ, Kim SS, Lim YJ. Lee MH, Lee SH, Proc. of 2008 Spring Symposium on Display and Optical Device, 49 (2008)
  24. Hsu SF, Chien WY, Wu KH, Yeh LY, Wu MH, Lin TC, Tsai JC, Society for Information Display Int. Symp., 503 (2008)