화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.5, 509-513, September, 2009
키토산/피브로인 블렌드에 있어서 브롬화 리튬의 효과
Effect of Lithium Bromide on Chitosan/Fibroin Blend
E-mail:
초록
키토산/피브로인 블렌드의 구조와 물성에 미치는 브롬화 리튬의 효과를 고찰하기 위하여, 브롬화 리튬을 함유한 용액으로 성형한 키토산/피브로인 블렌드 필름과 성형 시 브롬화 리튬을 제거한 블렌드 필름의 구조적 특성을 조사하였다. 키토산/피브로인 블렌드는 용해된 브롬/리튬이온과 더불어 복합체를 형성하였고, 0.6 mol/L의 LiBr 농도에서 X-선회절에 의한 복합체의 결정성을 보였으며, 이온 농도가 증가할수록 결정성은 감소되었다. 복합체 용액으로부터 고화 시중화 및 삼투작용으로 브롬화 리튬을 제거한 블렌드 필름의 결정은 키토산의 수화형 결정상을 형성하였으며, 브롬화 리튬을 처리하지 않은 것에 비하여 결정성이 크게 증가하였다. 복합체에 의한 블렌드 필름은 자중의 수십 배의 물을 흡수하여 수화겔을 형성하였다.
For examining an effect of lithium bromide on structure and property of chitosan/fibroin blend, we investigated the structural characteristic of chitosan/fibroin blend films using solution with lithium bromide which was removed during a casting. The chitosan/fibroin blend formed a complex with the dissolved bromine/lithium ions. The crystalline phase of the complex was found in the blend film at LiBr concentration of 0.6 mol/L. The degree of crystallization was decreased with increasing the concentration of LiBr. The hydrated crystalline phase of chitosan was formed in the blend film that lithium bromide was removed in the process of casting by neutralization and osmotic action. The crystallinity of this film was increased largely as compared with that of the film without lithium bromide. The complexed blend film formed hydrogel absorbing plenty of water.
  1. Ogawa K, Yui T, Okuyama K, Int. J. Biol. Macromol., 34, 1 (2004)
  2. Park SJ, Kim CH, Tissue Eng. Regen. Med., 4, 471 (2007)
  3. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T, Journal of Surgical Research, 133, 185 (2006)
  4. Kim CH, Park HS, Gin YJ, Son YS, Lim SH, Choi YJ, Park KS, Park CW, Macromol. Res., 12(4), 367 (2004)
  5. VandeVord PJ, Matthew HWT, DeSilva SP, Mayton L, Wu B, Wooley PH, J. Biomed. Mater. Res., 59, 585 (2002)
  6. Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A, Biomaterials, 23, 833 (2002)
  7. Mi FL, Tan YC, Liang HF, Sung HW, Biomaterials, 23, 181 (2002)
  8. Park JH, Cho YW, Chung H, Kwon IC, Jeong SY, Biomacromolecules, 4(4), 1087 (2003)
  9. Park JH, Kwon S, Nam J, Park R, Chung H, Seo SB, Kim I, Kwon IC, Jeong SY, J. Control. Release, 95, 579 (2004)
  10. Okuyama K, Noguchi K, Kanenari M, Egawa T, Osawa K, Ogawa K, Carbohyd. Polym., 41, 237 (2000)
  11. Braier NC, Jishi RA, J. Mol. Struct. Theochem, 499, 51 (2000)
  12. Hasegawa M, Isogai A, Onabe F, Usuda M, Atalla RH, J. Appl. Polym. Sci., 45, 1873 (1992)
  13. Shanmugasundaram N, Ravichandran P, Reddy PN, Ramamurty N, Pal S, Rao KP, Biomaterials, 22, 1943 (2001)
  14. Deyao K, Liu J, Cheng GX, Lu XD, Tu HL, Dasilva JA, J. Appl. Polym. Sci., 60(2), 279 (1996)
  15. Silva RM, Elvira C, Mano JF, Roman JS, Reis RL, J. Mater. Sci.- Mater. Med., 15, 523 (2004)
  16. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M, Biomaterials, 26, 3919 (2005)
  17. Arvanitoyannis I, Kolokuris I, Nakayama A, Yamamoto N, Aiba S, Carbohyd. Polym., 34, 9 (1997)
  18. Koyano T, Minoura N, Nagura M, Kobayashi K, J. Biomed. Mater. Res., 39, 486 (1998)
  19. Devi DA, Smitha B, Sridhar S, Aminabhavi TM, J. Membr. Sci., 280(1-2), 45 (2006)
  20. Olabarrieta I, Forsstrom D, Gedde UW, Hedenqvist MS, Polymer, 42(9), 4401 (2001)
  21. Chen Q, Hu Y, Chen Y, Jiang X, Yang Y, Macromol. Biosci., 5, 993 (2005)
  22. Kim HS, Kim JT, Jung YJ, Ryu SC, Son HJ, Kim YG, Macromol. Res., 15(1), 65 (2007)
  23. Kim HS, Kim JT, Ryu SC, Kim JH, Biomaterials Research, 11, 96 (2007)
  24. Kweon HY, Um IC, Park YH, Polymer, 42(15), 6651 (2001)
  25. Kim DK, Kim HS, Polym.(Korea), 29(4), 408 (2005)
  26. Park SJ, Lee KY, Ha WS, Park SY, J. Appl. Polym. Sci., 74(11), 2571 (1999)
  27. Kweon H, Ha HC, Um IC, Park YH, J. Appl. Polym. Sci., 80(7), 928 (2001)
  28. Kang GD, Lee KH, Ki CS, Nahm JH, Park YH, Macromol. Res., 12(5), 534 (2004)
  29. Chen X, Li WJ, Zhong W, Lu YH, Yu TY, J. Appl. Polym. Sci., 65(11), 2257 (1997)