화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.4, 664-674, July, 1996
6H-BABPA계 폴리에테르이미드의 제조 및 성질
Synthesis and Properties of 6H-BABPA Polyetherimides
초록
2,2'-Bis(4-(3,4-dicarboxyphenoxy)phenyl)propane dianhydride (6H-BABPA)를 4- nitrophthalimide를 출발 물질로 하여 합성하였다. 합성된 6H-BABPA와 여러 종류의 디아민과의 단일 중합체를 기존의 two-step방법에 의해 중합하였다. 얻어진 폴리아믹산 중합체와 이를 열 이미드화하여 얻어진 폴리에테르이미드의 고유점도(inherent viscosity)는 0.46-2.46, 0.14-1.88 dL/g의 범위로 각각 얻어졌다. 또한 얻어진 폴리에테르이미드는 상온에서 유기 용매인 N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, methylene chloride에 녹았다. 유리전이온도의 범위는 190-251℃ 질소 분위기하에서의 초기 분해온도는 520℃ 이상이었다.
2,2'-Bis(4-(3,4-dicarboxyphenoxy)phenyl)propane dianhydride (6H-BABPA) was synthesized by 4-nitrophthalimide as starting material. Polyetherimides were prepared by conventional two-step method from 6H-BABPA and several diamines. This procedures yielded high molecular-weight polyamic acids and polyetherimides with inherent viscosities of 0.46-2.46, 0.14-1.88 dL/g, respectively. Most of these polymers were soluble in organic solvents such as N-methyl-2-pyrrolidone, N,N- dimethylformamide, N,N-dimethylacetamide, methylene chloride at ambient temperature. The glass transition temperatures of these polymers were in the range of 190-251℃ and the initial decomposition temperatures were over 520℃ under nitrogen.
  1. Adrova NA, Bessonov MI, Laius LA, Rudakov AP, "Polyimides-A New Class of Thermally Stable Polymers," USSR, Technomics-U.S.A. (1970)
  2. Cassidy PE, "Thermally Stable Polymers," Marcel Dekker (1980)
  3. Critchley JP, Knightm GJ, Wright WW, "Heat-Resistant Polymers," Plenum (1983)
  4. Bessonov MI, Koton MM, "Polyimide: Thermally Stable Polymers," p. 1, Consultants Bureau, New York (1987)
  5. Oishi Y, Kakimoto M, Imai Y, "Polyimide: Materials, Chemistry, and Characterization," p. 139, Elsevier Science Publishers B.V., Amsterdam (1989)
  6. Wilson D, Stenzenberger HP, Hergenrother PM, "Polyimides," Chapman and Hall (1990)
  7. Mercier JP, "Polyimide and other High-Temperature Polymers," eds. by J. Marc and M. Abadi, p. 151, Elsevier Science Publishers, Amsterdam (1991)
  8. Health DR, Wirth JG, U.S. Patent, 3,956,320 (1976)
  9. Keely DE, U.S. Patent, 4,237,259 (1980)
  10. Williams FJ, Relles HM, U.S. Patent, 4,297,474 (1981)
  11. Heath DR, Wirth JG, U.S. Patent, 3,787,475 (1974)
  12. Takekoshi T, Wirth JG, Heath DR, Kochanowski JE, Manello JS, Webber MJ, J. Polym. Sci. A: Polym. Chem., 18, 3069 (1980)
  13. Rogers ME, Grubbs H, Rodrigues D, Wilkes GL, Brennan A, Lin T, Marand H, McGrath JE, 37th International SAMPE Symp., 717 (1992)
  14. Reinders W, Ringer WE, Rec. Trav. Chem., 18, 326 (1974)
  15. Beck JR, J. Org. Chem., 38, 4086 (1973)
  16. Knudsen RD, Snyder HR, J. Org. Chem., 39, 3343 (1974) 
  17. Williams FJ, U.S. Patent, 3,847,869 (1974)
  18. Takekoshi T, Kochanowski JE, Manello JS, Webber MJ, J. Polym. Sci. A: Polym. Chem., 19, 1635 (1985)
  19. Takekoshi T, Kochanowski JE, Manello JS, Webber MJ, J. Polym. Sci. Polym. Symp., 74, 93 (1986)
  20. Hunteress EH, Shloss EL, Ehrlich P, "Organic Synthesis," Vol. 2, p. 457-458, John Wiley Inc., New York (1950)
  21. Nicolet BH, Bender JA, "Organic Synthesis," vol. 1, p. 410-411, John Wiley, New York (1950)
  22. Williams FJ, Doahue PE, J. Org. Chem., 42, 3425 (1977) 
  23. Kawashima Y, Ikeda T, Kitagawa H, "Polyimide: Materials, Chemistry, and Characterization," p. 123, Elsevier, Amsterdam (1989)
  24. Naverre M, "Polyimides: Synthesis, Characterization, and Application," ed. by K.L. Mittal, vol. 1, p. 429, Plenum Press, New York and London (1984)