Journal of Catalysis, Vol.252, No.2, 161-170, 2007
Isomerization of alpha-pinene over dealuminated ferrierite-type zeolites
Isomerization of alpha-pinene was performed on a series of dealuminated ferrierite (FER)-type zeolites in liquid phase at 363 K using a batch reactor. The course of zeolite dealumination was followed in detail using Si-29, Al-27, H-1 MAS NMR, XRD, FTIR, and sorption of nitrogen. The ammonium form of FER was dealuminated with aqueous solutions of HCl. While retaining the crystallinity of the zeolite particles, the treatments removed up to 53% of the tetrahedrally coordinated aluminum atoms from the FER framework. According to 29Si MAS NMR studies, the framework aluminum atoms located at the 10-membered rings in the main channels of FER (TB sites) were depleted preferentially from their positions. Even relatively mild dealumination of FER led to an active catalyst containing both Bronsted and Lewis centers, yielding up to 97% conversion of a-pinene at 363 K, in contrast to the 72% observed for the parent hydrogen form. Such catalytic behavior was discussed in terms of the conversion of a reactant inside micropores of the zeolite catalyst, on Bronsted acid centers with enhanced strength located probably in the vicinity of Lewis sites. The selectivity toward camphene and limonene changed smoothly with the dealumination level; thus, a higher selectivity toward limonene was observed at the expense of camphene formation with increasing the n(Si)/n(Al) ratio of the catalysts. The selectivity toward camphene and limonene was close to 85% for all of the materials studied. The initial rates of a-pinene transformations over FER-type materials exceeded those observed for other catalytic systems, heteropoly acid/SiO2 and H2SO4/ZrO2. This study demonstrates the successful application of a medium-pore zeolite for the catalytic transformation of alpha-pinene in liquid phase. (C) 2007 Elsevier Inc. All rights reserved.