화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.5, 735-743, September, 1996
액정 폴리에스테르와 Poly(butylene terephthalate)의 복합재료 연구
The Composites Based on Poly(butylene terephthalate) and a Liquid Crystalline Polyester
초록
분자 복합재료에 대한 개념을 응용하기 위해 액정고분자/엔지니어링 플라스틱 (PBT) 블렌드를 만들어 이들의 열적 성질과 모폴로지 그리고 기계적 성질을 조사하였다. 블렌드는 가공온도에서 거대상 분리 현상이나 열분해는 일어나지 않았으나 가공온도보다 높은 온도에서는 거대상 분리 현상이 일어났다. 블렌드의 결정화 거동은 DSC에 의한 등온 결정화 방법에 의해 조사되었고, 이로부터 Avrami식을 이용하여 결정화 속도 및 결정성장 메카니즘에 대한 정보를 얻었다. 또한, 블렌드로부터 제조된 압출물을 액체질소내에서 절단하여 전자현미경을 이용하여 단면의 모폴로지를 관찰하였으며, 그 결과 액정 domain은 0.1 μm에서 0.3μm의 크기로 균일하게 분포되었음을 확인하였다. 매트릭스 고분자내에서의 LCP domain은, 압출물 중앙에서는 타원형의 모양을, 표면에서는 가늘게 배향된 섬유 모양을 보였으며, 매트릭스와 LCP 사이의 계면 접착력은 그다지 좋지 않음을 보여 주었다. 블렌드 압출물의 인장강도와 초기 탄성율은 LCP 20%일때 최대값인 63MPa과 2.40 GPa을 나타내었다.
Blends of liquid crystalline polymer and engineering plastic, PBT, were prepared for the application of molecular composite concept. Thermal, morphological and mechanical properties were examined by differential scanning calorimetry, optical microscopy, scanning electron microscopy and tensile test. In the blends, liquid crystalline phase did not reveal any significant macrophase separation and thermal degradation under the temperature of processing condition, but macrophase separation was observed at higher temperature. Crystallization kinetics of the blends were investigated by the isothermal DSC method. Th Avrami analyses were applied to obtain the information on the crystal growth geometry and fctors controlling the rate of crystallization. By scanning electron micrographs of cryogenic fracture surfaces of extruded fibers, the LCP domains were found to be finely and uniformly dispersed in 0.1 to 0.3 μm size. Interfacial adhesion between the LCP and matrix polymer was rather poor. Under certain condition LCP formed a fiber structure in the thermoplastic matrix, with thin oriented LCP fibrils in the skin region and spherical or ellipsoidal LCP domains in the core. Tensile strength and modulus of the blend fiber containing 20% LCP measured at room temperature were 63 MPa and 2.40 GPa, respectively, which are relatively higher than those of pure PBT.
  1. Kohli A, Chung N, Weiss RA, Polym. Eng. Sci., 29, 573 (1989) 
  2. Blizard KG, Baird DG, Polym. Eng. Sci., 27, 653 (1987) 
  3. Weiss RA, Huh W, Nicolais L, "High Modulus Polymers," A.E. Zachariades and R.S. Poter, eds., p. 145, Marcel Deker Inc., New York (1987)
  4. Weiss RA, huh W, Nicolais L, Polym. Eng. Sci., 27, 684 (1987) 
  5. Kiss G, Polym. Eng. Sci., 27, 410 (1987) 
  6. Acierno D, Amendola E, Cafagna C, Nicolais L, Eobil R, Mol. Cryst. Liq. Cryst., 153, 533 (1987)
  7. Amano M, Nakagawa K, Polymer, 28, 263 (1987) 
  8. Sigmann A, Dagan A, Kenig S, Polymer, 26, 1325 (1985) 
  9. Chung T, SPE 45th ANTEC Tech. Paper, 33, 1404 (1987)
  10. Isayev AI, Modic MJ, Polym. Compos., 8, 158 (1987) 
  11. Blizard KG, Baird DG, SPE 45th ANTEC Conf. Proc., Boston, 311 (1986)
  12. Ramanathan R, Blizard KG, Baird DG, SPE 45th ANTEC Tech. Paper, 33, 1399 (1987)
  13. Joseph EG, Wilkes GL, Baird DG, Am. Chem. Soc. Div. polym. Prepr., 25, 94 (1984)
  14. Takayanagi M, Ogata T, Morikawa M, Kai TJ, J. Macromol. Sci.-Phys., B17, 591 (1980)
  15. Joseph EG, Wilkes GL, Baird DG, "Polymer Liquid Crystals," A. Blumstein Ed., p. 197, Plenum Press, N.Y. (1984)
  16. Bretas RES, Baird DG, Polymer, 24, 5233 (1922)
  17. Lee WC, DiBenedetto T, Polymer, 34, 684 (1993) 
  18. Datta A, Chen HH, Barid DG, Polymer, 34, 759 (1992) 
  19. Chang JH, Lee SM, Park NJ, Jo BW, Bang MS, Polym.(Korea), 18(6), 966 (1994)
  20. Ober C, Jin JI, Lenz RW, Macromol. Chem. Rapid Commun., 4, 49 (1983)
  21. Lenz RW, J. Polym. Sci. Polym. Symp., 72, 1 (1985)
  22. Avrami MJ, J. Chem. Phys., 7, 1103 (1939) 
  23. Bentley BJ, Leal LG, J. Fluid Mech., 167, 241 (1986) 
  24. Vinogradov GV, Int. J. Polym. Mater., 9, 187 (1982)