화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.112, No.9, 1914-1921, 2008
Raman spectroscopic study of the solvation of decafluorobenzophenone ketyl radical and related compounds in 2-propanol at ambient to supercritical temperatures
Time-resolved Raman spectroscopy has been applied to the hydrogen-abstraction reaction of decafluorobenzophenone (DFBP) from 2-propanol in temperatures ranging from room to supercritical temperature (520 K) at 31 MPa. The Raman bands of the intermediate ketyl radical (DFBPK) were identified. The Raman bands assigned to the C=C stretching mode (1639 cm(-1)) and the C-O stretching modes (1274 cm(-1)) shift to lower frequencies with increasing temperature. The corresponding Raman bands of stable molecules (reference molecules), benzhydrol, decafluorobenzhydrol, and benzophenone (BP), which all have similar molecular structures to those of DFBP or DFBPK, were also investigated at the same range of temperatures. Assignments of the Raman bands were performed with the help of density functional theoretical calculations and the isotopic exchange method. By comparing the Raman peak shifts of the radical with those of the reference molecules, the shift of the,C=C stretching mode with increasing temperature (or decrease in the solvent density) is considered to be primarily due to the decrease in the repulsive interaction between the solute and the solvent. On the other hand, the shift of the C-O stretching mode of the radical reflects the decrease in the solvent Lewis acidity or its hydrogen-bonding donating ability, which is clearly illustrated by the shifts of the C=O stretching mode of BP and the C-O stretching mode of 2-propanol. The frequency of the C-O stretching mode of DFBPK was relatively sensitive to the surrounding environment. It was observed that the bandwidth of the radical was generally large, and this observation supports the previous report by Terazima and Hamaguchi (Terazima, M.; Hamaguchi, H. J. Chem. Phys. 1995, 99, 7891). Additionally, the sensitivity and the deformability of the radical structure due to the change of the solvent temperature and density were revealed in our studies.