Journal of Physical Chemistry A, Vol.112, No.10, 2058-2064, 2008
Characterizing excited states of CH5+ with diffusion Monte Carlo
The spectroscopy and dynamics of protonated methane have been of long-standing interest due to the unusual and highly fluxional behavior of CH5+. This reflects the fact that the ground-state wave function for CH5+ has nearly equal amplitude at the 120 equivalent minima and at the saddle points that connect these minima. While low-resolution spectra of CH5+ have been assigned, the nature of the couplings between the CH stretches and the low-frequency modes is not as well characterized. An understanding of this will be important in the interpretation of rotationally resolved spectra. In this work, fixed-node diffusion Monte Carlo techniques are used to calculate energies and probability amplitudes for several excited states. The calculated energies are shown to be in good agreement with previously reported vibrational configuration interactions calculations. Analysis of the 12-dimensional probability amplitudes shows that there are strong couplings between the high-frequency CH stretch and HCH bend motions and the low-frequency modes that lead to isomerization CH5+.