화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.112, No.3, 967-972, 2008
On the origin of the polar order of T4 lysozyme on planar model surfaces
Site directed spin labeling is used to investigate the origin of the macroscopic alignment of T4 lysozyme vectorially tethered to planar biomimetic surfaces. T4 lysozyme was adsorbed to a quartz-supported dioleoylphosphatidylcholine (DOPC) bilayer by selective binding of the histidine-tagged protein to functionalized headgroups (1,2-dioleoyi-sn-glycero-3-[[N(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl], DOGS NTA) of the bilayer. This results in a polar oriented ensemble of proteins on the surface, which gives rise to angular-dependent electron paramagnetic resonance (EPR) spectra. In order to reveal the mechanism of the protein alignment, the influence of protein coverage on the order of the molecules was addressed. Along the lines described previously for a full monolayer (Jacobsen, et al. Biophys. J. 2005, 88, 4351), the polar orientation of the molecules was inferred from an analysis of the EPR line shape using the stochastic Liouville equation (SLE) approach developed by Freed and co-workers. The simulations reveal that the orientation of the protein is strongly determined by lateral protein-protein interactions. In comparison to the lipid bilayer, a fusion protein of T4 lysozyme (T4L) with Annexin XII was investigated, where the two-dimensional crystallization of Annexin XII on a dioleoylphosphatidylserine (DOPS) bilayer provides a surface layer of regularly anchored T4L molecules. For this system, it is found that the interaction between T4L and Annexin plays a more important role for understanding the structure in the adsorbed state.