화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.130, No.3, 1085-1092, 2008
Supramolecular pattern of fullerene on 2D bimolecular "chessboard" consisting of bottom-up assembly of porphyrin and phthalocyanine molecules
Two-component adlayers consisting of zinc(II) phthalocyanine (ZnPc) and a metalloporphyrin, such as zinc(II) octaethylporphyrin (ZnOEP) or zinc(II) tetraphenylporphyrin (ZnTPP), were prepared by immersing either an Au(111) or Au(100) substrate in a benzene solution containing those molecules. The bimolecular adlayers thus prepared were investigated in 0.1 M HClO4 by cyclic voltammetry (CV) and electrochemical scanning tunneling microscopy (EC-STM). A supramolecularly organized "chessboard" structure was formed for the ZnPc and ZnOEP bimolecular array on Au(111), while characteristic nanohexagons were found in the ZnTPP and ZnOEP bimolecular adlayer. EC-STM revealed that the surface mobility and the molecular re-organization of ZnPc and ZnOEP on Au(111) were tunable by manipulating the electrode potential, whereas the ZnTPP and ZnOEP bimolecular array was independent of the electrode potential. A "bottom-up" hybrid assembly of fullerene molecules was formed successfully on an alternate array of bimolecular ZnPc and ZnOEP molecules. The bimolecular "chessboard" served as a template to form the supramolecular assembly of C-60 by selective trapping in the open spaces. A supramolecular organization of ZnPc and ZnOEP was also found on the reconstructed Au(100)-(hex) surface. A highly ordered, compositionally disordered but alternate array of ZnPc and ZnOEP was formed on the reconstructed Au(100)-(hex) surface, indicating that the bimolecular adlayer structure is dependent on the atomic arrangement of underlying Au in the formation of supramolecular nanostructures composed of those molecules. On the bimolecular array consisting of ZnPc and ZnOEP on the Au(100)-(hex), no highly ordered supramolecular assembly of C-60 was found, suggesting that the supramolecular assembly of C-60 molecules is strongly dependent upon the bimolecular packing arrangement of ZnPc and ZnOEP.