Journal of the American Chemical Society, Vol.130, No.12, 4187-4195, 2008
Experimental observation of the transition between gas-phase and aqueous solution structures for acetylcholine, nicotine, and muscarine ions
Structural information on acetylcholine and its two agonists, nicotine, and muscarine has been obtained from the interpretation of infrared spectra recorded in the gas-phase or in low pH aqueous solutions. Simulated I R spectra have been obtained using explicit water molecules or a polarization continuum model. The conformational space of the very flexible acetylcholine ions is modified by the presence of the solvent. Distances between its pharmacophoric groups cover a lower range in hydrated species than in isolated species. A clear signature of the shift of protonation site in nicotine ions is provided by the striking change of their infrared spectrum induced by hydration. On the contrary, structures of muscarine ions are only slightly influenced by the presence of water.